Ketcham, Mahasak
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Predictive analysis of terrorist activities in Thailand's Southern provinces: a deep learning approach Ganokratanaa, Thittaporn; Ketcham, Mahasak
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1797-1808

Abstract

Terrorist activities have been on the rise globally, with Thailand experiencing significant challenges, particularly in its three southern border provinces. This study offers a comprehensive analysis aiming to predict forthcoming terrorist events in these provinces. We employed historical data, categorized into nine groups based on military expert recommendations, to train our prediction model. This research tested the prediction capabilities of various methodologies, including decision trees, naïve Bayesian learning techniques, and deep learning artificial neural networks. Notably, the deep neural network emerged as the superior predictive tool, achieving an impressive accuracy of 98.21% and a root mean square error (RMSE) of 0.59%. The primary anticipated events include bombings, shootings, assaults, and acts of vandalism. Our findings also revealed that Pattani Province was the most affected, accounting for 45% of incidents. Specific districts, such as Panare and Yarang, exhibited high crime rates of 40% and 36.84%, respectively. Yala Province, particularly Bannang Sata District, was identified as the hotspot for shooting incidents, with a rate of 34%.