Aspar, Mohd Amir Shahlan Mohd
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Advancements in ammonia gas detection: a comparative study of sensor technologies Hadi, Amran Abdul; Shaipuzaman, Nurulain Nadhirah; Aspar, Mohd Amir Shahlan Mohd; Salim, Mohd Rashidi; Manap, Hadi
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5107-5116

Abstract

Ammonia gas is a colorless gas that is known for its pungent odor. It is commonly used in various industries, such as agriculture, refrigeration, and chemical manufacturing. This paper provides a comprehensive overview of various technologies employed in ammonia gas sensors. The objective is to compare and identify the optimum method to detect ammonia gas. The review encompasses catalytic gas sensors, metal oxide gas sensors, polymer conductivity gas sensors, optical gas sensors, and indirect gas sensors, detailing their respective operational principles. Additionally, the advantages and disadvantages of each technology for ammonia gas detection are outlined. All these technologies have been used for many applications and some of them have been commercialized. Some sensor characteristics suggestions are also stated in order to develop an improved optical ammonia sensor for industrial applications.
Development of DOAS System for Hazardous Methane Detection in the Near-Infrared Region Khandaker, Sayma; Hasan, Md Mahmudul; Shaipuzaman, Nurulain; Aspar, Mohd Amir Shahlan Mohd; Manap, Hadi
EMITTER International Journal of Engineering Technology Vol 12 No 2 (2024)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v12i2.890

Abstract

Methane (CH4) is a powerful greenhouse gas that greatly contributes to global warming. It is also very combustible, which means it has a large danger of causing explosions. It is crucial to tackle methane emissions, especially those arising from oil and gas extraction processes like transit pipes. An area of great potential is the advancement of dependable sensors for the detection and reduction of methane leaks, with the aim of averting dangerous consequences. An open-path differential optical absorption spectroscopy (DOAS) system was described in this paper for the purpose of detecting CH4 gas emission at a moderate temperature. An in-depth examination of the absorption lines was conducted to determine the optimal wavelength for measurement. The Near Infrared (NIR) region was identified as the most suitable wavelength for detecting methane. Multiple measurements were conducted at different integration times (1 second, 2 seconds, and 3 seconds) to ensure reliability and determine the optimal integration time for the CH4 detection system. The DOAS system has the capability of precisely detecting methane concentrations at 1M ppm in the NIR region with a quick integration time of 2 seconds.