Lipikorn, Rajalida
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Emoji’s sentiment score estimation using convolutional neural network with multi-scale emoji images Kulkongkoon, Theerawee; Cooharojananone, Nagul; Lipikorn, Rajalida
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp698-710

Abstract

Emojis are any small images, symbols, or icons that are used in social media. Several well-known emojis have been ranked and sentiment scores have been assigned to them. These ranked emojis can be used for sentiment analysis; however, many new released emojis have not been ranked and have no sentiment score yet. This paper proposes a new method to estimate the sentiment score of any unranked emotion emoji from its image by classifying it into the class of the most similar ranked emoji and then estimating the sentiment score using the score of the most similar emoji. The accuracy of sentiment score estimation is improved by using multi-scale images. The ranked emoji image data set consisted of 613 classes with 161 emoji images from three different platforms in each class. The images were cropped to produce multi-scale images. The classification and estimation were performed by using convolutional neural network (CNN) with multi-scale emoji images and the proposed voting algorithm called the majority voting with probability (MVP). The proposed method was evaluated on two datasets: ranked emoji images and unranked emoji images. The accuracies of sentiment score estimation for the ranked and unranked emoji test images are 98% and 51%, respectively.