Pinza-Jiménez, Christian Javier
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Assessing the performance of random forest regression for estimating canopy height in tropical dry forests Pinza-Jiménez, Christian Javier; Garces-Gomez, Yeison Alberto
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6787-6796

Abstract

Accurate estimation of forest canopy height is essential for monitoring forest ecosystems and assessing their carbon storage potential. This study evaluates the effectiveness of different remote sensing techniques for estimating forest canopy height in tropical dry forests. Using field data and remote sensing data from airborne lidar and polarimetric synthetic aperture radar (SAR), a random forest (RF) model was developed to estimate canopy height based on different indices. Results show that the normalize difference build-up index (NDBI) has the highest correlation with canopy height, outperforming other indices such as relative vigor index (RVI) and polarimetric vertical and horizontal variables. The RF model with NDBI as input showed a good fit and predictive ability, with low concentration of errors around 0. These findings suggest that NDBI can be a useful tool for accurately estimating forest canopy height in tropical dry forests using remote sensing techniques, providing valuable information for forest management and conservation efforts.