Dhanal, Radhika Jinendra
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Aspect-based sentiment-analysis using topic modelling and machine-learning Dhanal, Radhika Jinendra; Ghorpade, Vijay Ram
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6689-6698

Abstract

This study addresses the critical need for an accurate aspect-based sentiment-analysis (ABSA) model to understand sentiments effectively. The existing ABSA models often face challenges in accurately extracting aspects and determining sentiment polarity from textual data. Therefore, we propose a novel approach leveraging latent-Dirichlet-allocation (LDA) for aspect extraction and transformer-based bidirectional-encoder-representations from transformers (TF-BERT) for sentiment-polarity evaluation. The experiments were carried out on SemEval 2014 laptop and restaurant datasets. Also, a multi-domain dataset was generated by combining SemEval 2014, Amazon, and hospital reviews. The results demonstrate the superiority of the LDA-TF-BERT model, achieving 82.19% accuracy and 79.52% Macro-F1 score for the laptop task and 86.26% accuracy of 87.26% and 81.27% for Macro-F1 score for the restaurant task. This showcases the model's robustness and effectiveness in accurately analyzing textual data and extracting meaningful insights. The novelty of our work lies in combining LDA and TF-BERT, providing a comprehensive and accurate ABSA solution for various industries, thereby contributing significantly to the advancement of sentiment analysis techniques.
Aspect term extraction from multi-source domain using enhanced latent Dirichlet allocation Dhanal, Radhika Jinendra; Ghorpade, Vijay Ram
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 1: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i1.pp475-484

Abstract

This study presents a comprehensive exploration of sentiment analysis across diverse domains through the introduction of a multi-source domain dataset encompassing hospitals, laptops, restaurants, cell phones, and electronics. Leveraging this extensive dataset, an enhanced latent Dirichlet allocation (E-LDA) model is proposed for topic modeling and aspect extraction, demonstrating superior performance with a remarkable coherence score of 0.5727. Comparative analyses with traditional LDA and other existing models showcase the efficacy of E-LDA in capturing sentiments and specific attributes within different domains. The extracted topics and aspects reveal valuable insights into domain-specific sentiments and aspects, contributing to the advancement of sentiment analysis methodologies. The findings underscore the significance of considering multi-source datasets for a more holistic understanding of sentiment in diverse text corpora.