Claim Missing Document
Check
Articles

Found 2 Documents
Search

Face recognition for occluded face with mask region convolutional neural network and fully convolutional network: a literature review Rahmat Budiarsa; Retantyo Wardoyo; Aina Musdholifah
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp5662-5673

Abstract

Face recognition technology has been used in many ways, such as in the authentication and identification process. The object raised is a piece of face image that does not have complete facial information (occluded face), it can be due to acquisition from a different point of view or shooting a face from a different angle. This object was raised because the object can affect the detection and identification performance of the face image as a whole. Deep leaning method can be used to solve face recognition problems. In previous research, more focused on face detection and recognition based on resolution, and detection of face. Mask region convolutional neural network (mask R-CNN) method still has deficiency in the segmentation section which results in a decrease in the accuracy of face identification with incomplete face information objects. The segmentation used in mask R-CNN is fully convolutional network (FCN). In this research, exploration and modification of many FCN parameters will be carried out using the CNN backbone pooling layer, and modification of mask R-CNN for face identification, besides that, modifications will be made to the bounding box regressor. it is expected that the modification results can provide the best recommendations based on accuracy.
Face recognition with occluded face using improve intersection over union of region proposal network on Mask region convolutional neural network Budiarsa, Rahmat; Wardoyo, Retantyo; Musdholifah, Aina
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3256-3265

Abstract

Face recognition entails detecting and identifying facial attributes. Mask region convolutional neural network (R-CNN) method is a prominent approach, while prior research predominantly delved into refining loss functions and perfecting object and face detection, recognizing, and identifying faces using imperfect data remained relatively unexplored. This study focuses on an occluded dataset comprising Indonesian faces, wherein 'occluded' denotes facial data that lacks complete visibility-encompassing instances where objects obscure faces or are partially cropped. This investigation involves a deliberate experiment that tailors the intersection over union (IoU) of the region proposal network (RPN) to suit the nuances of occluded Indonesian faces, thereby augmenting accuracy in recognition and segmentation tasks. The innovation IoU in the strategic utilization of Anchors, which involves the exclusion of anchors falling beyond the image borders to optimize computational efficiency. The outcomes of this research are striking; it showcases a remarkable 14.75%, 10.9%, and 12.97% surge based on mean average precision (mAP), mean average recall (mAR), and F1-Scores compared to the conventional Mask R-CNN approach. Notably, our proposed model elevates the average accuracy by 10% to 15% and decreases running time by 21%, a noteworthy enhancement compared to the preceding model. This progress is substantiated by validation utilizing 300 instances dataset, reinforcing the robustness of our approach.