This Author published in this journals
All Journal Jurnal Informatika
Silvana Anggraeni, Zulmeida
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analisis Sentimen Publik pada Media Sosial Twitter Terhadap Tiket.com Menggunakan Algoritma Klasifikasi Budiman, Budiman; Silvana Anggraeni, Zulmeida; Habibi, Chairul; Alamsyah, Nur
Jurnal Informatika Vol 11, No 1 (2024): April 2024
Publisher : Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/inf.v11i1.17988

Abstract

Analisis sentimen merupakan proses identifikasi emosional seseorang terhadap suatu objek yang akan menghasilkan sentimen positif, negatif dan netral. Kemajuan teknologi ini tentu memberikan pengaruh terhadap berbagai pelaku bisnis untuk saling mengintegrasikan sistem bisnisnya satu sama lain, salah satunya Tiket.com. Hal tersebut tentu menghasilkan sentimen dari masyarakat Indonesia yang diunggah pada platform media sosial Twitter, sehingga membantu individu maupun organisasi dalam mengambil keputusan. Penelitian ini dilakukan untuk mengetahui klasifikasi sentimen masyarakat Indonesia terhadap Tiket.com menggunakan algoritma Naïve Bayes Classifier (NBC), K-Nearest Neighbor (KNN), Support Vector Machine (SVM) dan Random Forest (RF). Berdasarkan perhitungan data sentimen terhadap Tiket.com terdapat 90.3% sentimen positif dan 9.7% sentimen negatif. Persentase tersebut menunjukkan bahwa Tiket.com cukup berpengaruh positif terhadap penggunanya. Berdasarkan hasil pengujian algoritma klasifikasi, diketahui NBC memperoleh tingkat akurasi sebesar 88%, KNN dengan nilai k = 11 mendapatkan akurasi sebesar 91%, SVM menghasilkan tingkat akurasi sebesar 92%, dan tingkat akurasi RF mencapai 93% dengan n_estimators = 100. Kesimpulan pada penelitian ini, Random Forest merupakan algoritma yang memiliki tingkat akurasi paling tinggi dibanding dengan algoritma klasifikasi lain.