Claim Missing Document
Check
Articles

Found 3 Documents
Search

The implementation of an optimized neural network in a hybrid system for energy management Jarmouni, Ezzitouni; Mouhsen, Ahmed; Lamhamdi, Mohamed; Ennajih, Elmehdi; Ennaoui, Ilias; Krari, Ayoub
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i2.pp815-823

Abstract

In the face of increasing global energy demand and volatile energy prices, many countries are searching for solutions to ensure their energy independence. One of the most popular solutions is to incorporate renewable energy sources in their energy systems. While there are many advantages to integrating renewable energy sources, it is important to note that their intermittent operation can present challenges. Energy storage and smart grid management systems are key solutions to overcome these challenges and ensure sustainable, reliable use of renewable energy sources. In this article, we present an intelligent electrical energy management system for hybrid energy systems. This management system is based on a multi-layer neural network that has undergone an architecture optimization phase to improve the accuracy of real-time energy management and simplify its implementation. The management model that was built demonstrated highly good performance across a range of test circumstances.
Smart portable system for monitoring vibration based on the Raspberry Pi microcomputer and the MEMS accelerometer Baghdadi, Hajar; Rhofir, Karim; Lamhamdi, Mohamed
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 12, No 3: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v12i3.pp261-271

Abstract

In this work, an internet of things (IoT) sensing and monitoring box has been developed. The proposed low-cost system is a portable device for smart buildings to measure vibrations, monitor, and control noise caused by the industrial machines. We will present an instrument and a method to measure the vibration and tilt of a mechanical system (air conditioner). The primary goal is to create a signal acquisition and monitoring system that is both user-friendly and affordable, while also delivering exceptional precision. The key concept is centered around acquiring and processing signals through the Raspberry Pi. We will use for the first time as an application, which does not exist before, a conversion method to control and monitor remotely the noise generated by the machines. Once the noise reaches a high value or the air conditioner is too much tilted, the system sends an alert in the form of an email. We will use the Python language to acquire and process the signal and send the alerts. The proposed approach is straightforward to implement, and the obtained results demonstrate a high level of accuracy that is consistent with the existing literature.
Nonlinear backstepping and model predictive control for grid-connected permanent magnet synchronous generator wind turbines Kassoumi, Adil El; Lamhamdi, Mohamed; Mouhsen, Ahmed; Fdaili, Mohammed; Aboudrar, Imad; Mouhsen, Azeddine
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i6.pp5091-5105

Abstract

This research investigates and compares two nonlinear current-control strategies, backstepping control (BSC) and finite control set model predictive control (FCS-MPC) for machine-side and grid-side converters in grid-connected direct-drive permanent magnet synchronous generator (DD-PMSG) wind turbines. Addressing the control challenges in wind energy systems with varying speeds, the study aims to determine which strategy offers superior performance under identical operating conditions. The nonlinear BSC regulates stator and grid currents using Lyapunov-based techniques, while FCS-MPC leverages model predictions to select optimal switching states based on a cost function. A comprehensive simulation using MATLAB/Simulink is conducted, analyzing each controller’s transient behavior, steady-state response, torque ripple, and power quality total harmonic distortion (THD). Results show that FCS-MPC achieves faster convergence, lower overshoot, and superior power quality compared to BSC, though it requires higher computational resources. Statistical validation supports the robustness of FCS-MPC under parameter uncertainties. This work contributes a structured comparison of advanced nonlinear strategies for PMSG-based wind turbines and provides a foundation for future implementations in real-time embedded control systems. Future directions include experimental validation and hybrid model predictive controller- artificial intelligence (MPC-AI) control frameworks.