Claim Missing Document
Check
Articles

Found 1 Documents
Search

Performance evaluation of bridgeless isolated SEPIC-Luo converter for EV battery charging using PI and ANN controller Dhandapani, Meena; Ravichandran, Padmathilagam; Shanmugam, Arulvizhi; Pachaivanan, Nammalvar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i2.pp935-946

Abstract

Electric vehicle (EV) rechargeable battery packs that employ traditional power factor correction (PFC) circuit design have performance limitations due to their substantial conductivity loss that ensures at the input of a diode bridge rectifier (DBR). This study suggests a bridgeless (BL) isolated single ended primary inductance converter (SEPIC) - Luo converter to address the problem. As a result, the input current exhibits a power factor operation of unity throughout the charging process. DBR elimination and current conduction through a remarkably small number of circuits both significantly reduce conduction losses. The use of an artificial neural network (ANN) and proportional integral (PI) controller enhances the converter's performance with a stable DC link voltage. The suggested converter overall operation is thoroughly described in terms of variety of operating modes and simulation-based effectiveness. Here, with the assistance of the hysteresis current controller (HCC), the input current disruptions are reduced. Constant current and voltage management is used to successfully charge the EV battery, resulting in improved efficacy and inherent PFC. By utilizing simulation outcomes achieved from MATLAB, the performance of proposed BL isolated SEPIC-Luo in boosting the power quality of EV charger system is examined.