Thorough path planning is critical in unmanned ground vehicle control to reduce path length, computational time, and the number of collisions. This paper aims to introduce a new metaheuristic method called the Hybrid Crocodile Hunting-SearcH and Falcon Optimization (CHS-FO) algorithm. This method combines CHS's exploration and exploitation abilities with FO's rapid convergence rate. In this way, the use of both metaheuristic techniques limits the disadvantage of the individual approach, guaranteeing a high level of both global and local search. We conduct several simulations to compare the performance of the CHS-FO algorithm with conventional algorithms such as A* and Genetic Algorithms (GA). It is found The results show that the CHS-FO algorithm performs 30–50% better in terms of computation time, involves shorter path planning, and improves obstacle avoidance. Eristic also suggests that the path generation algorithm can adapt to environmental constraints and be used in real-world scenarios, such as automating product movement in a warehouse or conducting search and rescue operations for lost vehicles. The primary The proposed CHS-FO architecture makes the robot more independent and better at making choices, which makes it a good choice for developing the next generation of mobile robotic platforms. Goals will encompass the improvement of the algorithm's scalability for use in multiple robots, as well as the integration of the algorithm in a real environment in real time.