Ghiloubi, Imam Barket
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Adjusted linear quadratic regulator-proportional-derivative control of Quanser’s three degrees of freedom helicopter based on flower pollination algorithm under external disturbances Ghiloubi, Imam Barket; Abdou, Latifa; Lahmar, Oussama
IAES International Journal of Robotics and Automation (IJRA) Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v13i4.pp432-444

Abstract

External disturbances, saturation of actuator motors, and limits of certain angular movements are commonly encountered in robotic systems, particularly those involving flight, and they present the most common and influential factors affecting the stability and performance of these systems. In this paper, a hybrid controller for a three-degree-of-freedom (3-DoF) helicopter is designed and applied to this flying robot system, taking into account the previously mentioned constraints. The proposed hybrid controller integrates proportional-derivative (PD) control with an adjusted linear quadratic regulator (ALQR) using the flower pollination algorithm (FPA) optimization method. Simulation results of travel (λ), elevation (ε), and pitch (ρ) responses, as well as experimental results of elevation and travel tracking responses under external disturbances using the bench-top Quanser’s (3-DoF) helicopter, demonstrate the robustness and good performance of the controlled system using the proposed method. The effectiveness of the proposed method is compared to several methods in the literature.