Claim Missing Document
Check
Articles

Found 2 Documents
Search

Klasifikasi Buah Jeruk Segar dan Busuk Berdasarkan RGB dan HSV Menggunakan Metode KNN Napitu, Stifani; Paramita Panjaitan, Rini; Nulhakim, Putri Aisyah; Khalik Lubis, Muaz
Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen Vol 13 No 2 (2023): September 2023
Publisher : STMIK Palangkaraya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33020/saintekom.v13i2.420

Abstract

Fruits are a group of agricultural commodities in Indonesia. The demand for domestic fruit commodities is quite high, this is indicated by the large number of fruits available in modern markets and traditional markets. In this research, a classification process will be carried out between fresh oranges and rotten oranges based on RGB (Red, Green, Blue) and HSV (Hue, Saturation, Value) color extraction. This study uses the K-Nearest Neighbor classification algorithm with a value of k = 1; 2; 3; 4; 5; 6; and 7. The dataset used consists of 146 training data and 88 testing data. The purpose and benefits of this research are to save time and facilitate classification according to the wishes of fruit growers. The final result of the test accuracy is 88.95%. Based on the test, this system can be said to be quite good at classifying fresh and rotten citrus fruits.
Prediksi Jumlah Wisatawan Mancanegara Ke Sumatera Utara Berdasarkan Pintu Masuk Utama Menggunakan Algoritma Backpropagation Neural Network Nulhakim, Putri Aisyah; Chairunisah, Chairunisah; Arnita, Arnita
Jurnal Ilmiah ILKOMINFO - Ilmu Komputer & Informatika Vol 7, No 2 (2024): Juli
Publisher : Akademi Ilmu Komputer Ternate

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47324/ilkominfo.v7i2.264

Abstract

Abstrak: Sumatera Utara merupakan provinsi yang populer untuk wisatawan mancanegara karena banyak potensi wisata yang menarik, seperti Danau Toba, Brastagi, Bukit Lawang, dan Kota Medan Sendiri. Berdasarkan data yang bersumber dari BPS terdapat peningkatan jumlah kunjungan wisatawan mancanegara ke Sumatera Utara pada tahun 2021-2022 sebesar 99,6%. Memprediksi jumlah kunjungan wisatawan mancanegara ke Sumatera Utara penting dilaksanakan agar perencanaan dan pengembangan pariwisata internasional dapat dikembangan secara optimal. Pada penelitian ini, dilakukan prediksi jumlah wisatawan mancanegara yang berkunjung ke Sumatera Utara menggunakan algoritma Backpropagation Neural Network. Dataset yang digunakan dalam penelitian ini ialah data tahun 2016 hingga 2023, dengan variabel yang digunakan meliputi Kurs, Nilai Inflasi, dan suku bunga. Adapun tahapan penelitian ini dimulai dari input data, normalisasi data, training data , testing data dan prediksi untuk tahun 2024. Dilakukan beberapa pengujian training data dengan berbagai learning rate dan epoch untuk menentukan model terbaik. Hasil penelitian menunjukkan bahwa model yang baik diperoleh pada learning rate 0.0001 dan epoch 200. Evaluasi model dilakukan menggunakan Mean Squared Error (MSE) sebagai metrik evaluasi. Model terbaik menunjukkan nilai MSE sebesar 4.4551.Penelitian ini memberikan wawasan mengenai penggunaan algoritma Backpropagation Neural Network dalam memprediksi jumlah wisatawan mancanegara serta memberikan panduan untuk pengambilan keputusan dalam sektor pariwisata di Sumatera Utara.Kata kunci: Wisatawan Mancanegara, Backpropagation Neural Network, Sumatera UtaraAbstract: North Sumatra is a popular province among foreign tourists because it has many interesting attractions such as Lake Toba, Brastagi, Bukit Lawang, and Medan City. According to BPS, the number of foreign tourists in North Sumatra will increase by 99.6% in 2021-2022. Forecasting the number of foreign tourists visiting North Sumatra is important for planning and developing international tourism for its optimal development. This study made predictions about the number of foreign tourists visiting North Sumatra using a Backpropagation Neural Network algorithm. This work uses material from the years 2016-2023, whose variables are for example exchange rates, inflation and interest rates. The stages of this research start from data entry, data normalization, training data, data testing, and forecasting until 2024. To determine the best model, several experiments were conducted with training data with different learning rates and periods. Research results showed a good model was obtained with learning rate  0.0001 and an epoch 200. Model evaluation was performed using the evaluation metric MSE (Mean Squared Error). The MSE of the best model is 4.4551. This study provides an overview of the use of the Backpropagation Neural Network algorithm in forecasting the number of foreign tourists and provides decision-making guidelines for the North Sumatra tourism industry.Keywords: International tourists, Backpropagation Neural Network, North Sumatera