Chemseddine Idrissi, Imrane
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A new efficient decoder of linear block codes based on ensemble learning methods El Assad, Mohammed; Nouh, Said; Chemseddine Idrissi, Imrane; El Kasmi Alaoui, Seddiq; Aylaj, Bouchaib; Azzouazi, Mohamed
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i2.pp2236-2246

Abstract

Error-correcting codes are used to partially or completely correct errors as much as possible, while ensuring high transmission speeds. Several machine learning models such as logistic regression and decision tree have been applied to correct transmission errors. Among the most powerful machine learning techniques are aggregation methods which have yielded to excellent results in many areas of research. It is this excellence that has prompted us to consider their application for the hard decoding problem. In this sense, we have successfully designed, tested and validated our proposed EL-BoostDec decoder (hard decision decoder based on ensemble learning-boosting technique) which is based on computing of the syndrome of the received word and on using ensemble learning techniques to find the corresponding corrigible error. The obtained results with EL-BoostDec are very encouraging in terms of the binary error rate (BER) that it offers. Practically EL-BoostDec has succeed to correct 100% of errors that have weights less than or equal to the correction capability of studied codes. The comparison of EL-BoostDec with many competitors proves its power. A study of parameters which impact on EL-BoostDec performances has been established to obtain a good BER with minimum run time complexity.
New family of error-correcting codes based on genetic algorithms Bellfkih, El Mehdi; Nouh, Said; Chemseddine Idrissi, Imrane; Louartiti, Khalid; Mouline, Jamal
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i2.pp1077-1086

Abstract

This paper introduces a novel error-correcting code (ECC) construction and decoding approach utilizing genetic algorithms (GAs). Classical ECCs often struggle with efficiency in correcting multiple errors due to time-consuming matrix-based encoding and decoding processes. Our GA-based method optimizes generator vectors to maximize the minimum distance between codewords, enhancing error correction capabilities. Specifically, we construct a new family of ECCs with code length 31, dimension 12, and minimum distance 7, reducing complexity from O(kn) to O(k(n−k)) by encoding message blocks with vectors instead of matrices. In the decoding phase, the GA effectively corrects errors in received codewords. Experimental results show that at a signal-to-noise ratio (SNR) of 7.7 dB, our method achieves a bit error rate (BER) of 10−5 after only 9 generations of the GA. These results demonstrate improved error correction and decoding performance compared to traditional methods. This study contributes an innovative approach using GAs for error correction, offering simpler encoding and robust performance in coding schemes.