Pudupet Ethiraj, Rubini
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

A deep learning-based approach for early detection of disease in sugarcane plants: an explainable artificial intelligence model Pudupet Ethiraj, Rubini; Paranjothi, Kavitha
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i1.pp974-983

Abstract

In many regions of the nation, agriculture serves as the primary industry. The farming environment now faces a number of challenges to farmers. One of the major concerns, and the focus of this research, is disease prediction. A methodology is suggested to automate a process for identifying disease in plant growth and warning farmers in advance so they can take appropriate action. Disease in crop plants has an impact on agricultural production. In this work, a novel DenseNet-support vector machine: explainable artificial intelligence (DNet-SVM: XAI) interpretation that combines a DenseNet with support vector machine (SVM) and local interpretable model-agnostic explanation (LIME) interpretation has been proposed. DNet-SVM: XAI was created by a series of modifications to DenseNet201, including the addition of a support vector machine (SVM) classifier. Prior to using SVM to identify if an image is healthy or un-healthy, images are first feature extracted using a convolution network called DenseNet. In addition to offering a likely explanation for the prediction, the reasoning is carried out utilizing the visual cue produced by the LIME. In light of this, the proposed approach, when paired with its determined interpretability and precision, may successfully assist farmers in the detection of infected plants and recommendation of pesticide for the identified disease.