Nagaraja, Avinash
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Feature selection techniques for microarray dataset: a review Nagaraja, Avinash; Sinha, Sitesh Kumar; Mallaiah, Shivamurthaiah
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i2.pp2395-2402

Abstract

Automatic speech recognition (ASR) approach is dependent on optimal for many researchers working on feature selection (FS) techniques, finding an appropriate feature from the microarray dataset has turned into a bottleneck. Researchers often create FS approaches and algorithms with the goal of improving accuracy in microarray datasets. The main goal of this study is to present a variety of contemporary FS techniques, such as filter, wrapper, and embedded methods proposed for microarray datasets to work on multi-class classification problems and different approaches to enhance the performance of learning algorithms, to address the imbalance issue in the data set, and to support research efforts on microarray dataset. This study is based on critical review questions (CRQ) constructed using feature election methods described in the review methodology and applied to a microarray dataset. We discussed the analysed findings and future prospects of FS strategies for multi-class classification issues using microarray datasets, as well as prospective ways to speed up computing environment.