Owda, Amani Yousef
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Efficient commodity price forecasting using long short-term memory model Tami, Mohammad; Owda, Amani Yousef
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i1.pp994-1004

Abstract

Predicting commodity prices, particularly food prices, is a significant concern for various stakeholders, especially in regions that are highly sensitive to commodity price volatility. Historically, many machine learning models like autoregressive integrated moving average (ARIMA) and support vector machine (SVM) have been suggested to overcome the forecasting task. These models struggle to capture the multifaceted and dynamic factors influencing these prices. Recently, deep learning approaches have demonstrated considerable promise in handling complex forecasting tasks. This paper presents a novel long short-term memory (LSTM) network-based model for commodity price forecasting. The model uses five essential commodities namely bread, meat, milk, oil, and petrol. The proposed model focuses on advanced feature engineering which involves moving averages, price volatility, and past prices. The results reveal that our model outperforms traditional methods as it achieves 0.14, 3.04%, and 98.2% for root mean square error (RMSE), mean absolute percentage error (MAPE), and R-squared (R2), respectively. In addition to the simplicity of the model, which consists of an LSTM single-cell architecture that reduced the training time to a few minutes instead of hours. This paper contributes to the economic literature on price prediction using advanced deep learning techniques as well as provides practical implications for managing commodity price instability globally.
Convolutional neural networks breast cancer classification using Palestinian mammogram dataset Saadah, Hanin; Owda, Amani Yousef; Owda, Majdi
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp1149-1162

Abstract

Breast cancer is widespread across the globe. It’s the primary cause of death in cancer fatalities. According to the Palestinian Ministry of Health annual report, it ranked as the third reported death of all reported cancer deaths in the West Bank. Mammogram screening is the most common technique to diagnose breast abnormalities, but there is a challenge in the lack of skilled experts able to accurately interpret mammograms. Machine learning plays an important role in medical image processing particularly in early detection when the treatment is less expensive and available. In this paper we proposed different convolutional neural network (CNN) models to detect breast abnormalities with promising results. Six CNN models were used in this research on a unique (first-hand) dataset collected from the Palestinian Ministry of Health. The models are VGG16, VGG19, DenseNet121, ResNet50, Xception, and EfficientNetB7. Consequently, DenseNet121 outperformed other models with 0.83 and 0.85 for testing accuracy and area under curve (AUC) respectively. As a future work, the outperformed model can be combined with other patient data like genetic information, medical history, and lifestyle factors to evaluate the risk of developing specific diseases. This would increase the survival rate and enable proactive measures.