El Fkihi, Sanaa
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

A novel ensemble model for detecting fake news Bensouda, Nissrine; El Fkihi, Sanaa; Faizi, Rdouan
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i1.pp1160-1171

Abstract

Due the growing proliferation of fake news over the past couple of years, ourobjective in this paper is to propose an ensemble model for the automatic classification of article news as being either real or fake. For this purpose, we optfor a blending technique that combines three models, namely bidirectional longshort-term memory (Bi-LSTM), stochastic gradient descent classifier and ridgeclassifier. The implementation of the proposed model (i.e. BI-LSR) on realworld datasets, has shown outstanding results. In fact, it achieved an accuracyscore of 99.16%. Accordingly, this ensemble learning has proven to do performbetter than individual conventional machine learning and deep learning modelsas well as many ensemble learning approaches cited in the literature.