Claim Missing Document
Check
Articles

Found 3 Documents
Search

Virtual Ethnography of TikTok Social Media Users' Comments on Lina Mukherjee's Account Raihan, Muhammad Fajar; Febriana, Poppy
Procedia of Social Sciences and Humanities Vol. 7 (2024): International Conference On Emerging New Media and Social Science
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/pssh.v7i.636

Abstract

The amount of content on social media makes netizens give various kinds of comments on the content without paying attention to the ethics of commenting, just like what happened in Lina Mukherjee's Tik Tok content. This research aims to find out how hate comments exist on Lina Mukherjee's TikTok account through a virtual ethnographic approach. This type of research is qualitative through a virtual ethnographic approach using observation and literature study as a data collection technique. The data that has been collected is then analyzed using the Miles and Huberman analysis technique. The results of the study show that in the content of Lina Mukherjee's video that has reaped a lot of controversy, namely the video of reviewing Balinese pork guling food invites netizens to comment, but these comments are dominated by negative comments, only a few comments are positive, and neutral comments. The number of negative comments shows that some netizens do not apply communication ethics when commenting, so it is necessary to implement efforts to implement communication ethics which includes 6 steps, namely: Use good language; Do not use words that are vulgar, provocative, pornographic or SARA; cross-check the truth of the news; do not make honest uploads and do not spread false information; do not copy or use copyrighted articles or images without permission; and provide comments that are in accordance with the topic of the upload on social media." Positive comments show that netizens have applied the ethics of commenting when viewed from the point of view of ethical theory, where this action brings positive results, namely reducing the existence of feuds. In addition, neutral comments show that the comments are harmless, i.e. they do not hurt various parties and groups, races and religions.
Optimasi Sistem Deteksi Pencurian Motor Real-Time Menggunakan YOLO dan TensorRT Andreas, Derza; Najwan, Shafiq; Raihan, Muhammad Fajar; Lensi, Maria Erviana Asinta; Sipahutar, Randi Paisal; Hendrian, Yayan; Chrisnawati, Giatika
RIGGS: Journal of Artificial Intelligence and Digital Business Vol. 4 No. 2 (2025): Mei - Juli
Publisher : Prodi Bisnis Digital Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/riggs.v4i2.1147

Abstract

Tingginya angka pencurian sepeda motor menuntut solusi keamanan yang proaktif dan otomatis, mengingat sistem pengawasan konvensional umumnya bersifat reaktif dan kurang efektif. Penelitian ini mengusulkan sistem deteksi dini pencurian motor berbasis video yang mampu mengenali objek, mengidentifikasi individu, dan mendeteksi aktivitas mencurigakan secara real-time. Sistem ini mengintegrasikan berbagai teknologi kecerdasan buatan, termasuk YOLOv11 untuk deteksi objek, ByteTrack untuk pelacakan, InsightFace untuk identifikasi wajah, PaddleOCR untuk pembacaan pelat nomor, dan Real-ESRGAN untuk peningkatan resolusi citra. Pengujian dilakukan menggunakan video simulasi yang merepresentasikan kondisi nyata, seperti variasi pencahayaan, sudut kamera, dan interaksi antara subjek dan kendaraan. Evaluasi dilakukan terhadap 48 sampel wajah, 34 kasus identifikasi kendaraan, dan 20 skenario pencurian. Hasil evaluasi menunjukkan sistem berhasil mencapai akurasi 95,83% dalam identifikasi wajah dan 97,92% dalam identifikasi pelat nomor. Pada deteksi aktivitas curanmor, sistem mencatatkan akurasi 95% dan F1-score sebesar 96,97% tanpa adanya false negative. Dari segi performa, sistem yang dioptimasi dengan TensorRT (presisi FP16) menunjukkan peningkatan signifikan dalam kecepatan inferensi, dari 36,19 FPS (menggunakan PyTorch FP32) menjadi 56,47 FPS. Hasil ini menunjukkan bahwa sistem yang dikembangkan tidak hanya akurat dan andal, tetapi juga efisien untuk diterapkan dalam pengawasan keamanan rumah secara waktu nyata. Sistem ini juga memiliki potensi untuk dikembangkan lebih lanjut melalui integrasi dengan IoT guna meningkatkan respon otomatis terhadap potensi pencurian.
Virtual Ethnography of TikTok Social Media Users' Comments on Lina Mukherjee's Account Raihan, Muhammad Fajar; Febriana, Poppy
Procedia of Social Sciences and Humanities Vol. 7 (2024): International Conference On Emerging New Media and Social Science
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/pssh.v7i.636

Abstract

The amount of content on social media makes netizens give various kinds of comments on the content without paying attention to the ethics of commenting, just like what happened in Lina Mukherjee's Tik Tok content. This research aims to find out how hate comments exist on Lina Mukherjee's TikTok account through a virtual ethnographic approach. This type of research is qualitative through a virtual ethnographic approach using observation and literature study as a data collection technique. The data that has been collected is then analyzed using the Miles and Huberman analysis technique. The results of the study show that in the content of Lina Mukherjee's video that has reaped a lot of controversy, namely the video of reviewing Balinese pork guling food invites netizens to comment, but these comments are dominated by negative comments, only a few comments are positive, and neutral comments. The number of negative comments shows that some netizens do not apply communication ethics when commenting, so it is necessary to implement efforts to implement communication ethics which includes 6 steps, namely: Use good language; Do not use words that are vulgar, provocative, pornographic or SARA; cross-check the truth of the news; do not make honest uploads and do not spread false information; do not copy or use copyrighted articles or images without permission; and provide comments that are in accordance with the topic of the upload on social media." Positive comments show that netizens have applied the ethics of commenting when viewed from the point of view of ethical theory, where this action brings positive results, namely reducing the existence of feuds. In addition, neutral comments show that the comments are harmless, i.e. they do not hurt various parties and groups, races and religions.