Selvarajan, Kanchana
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A computational intelligent analysis of autism spectrum disorder using machine learning techniques Mareeswaran, Murali Anand; Selvarajan, Kanchana
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i1.pp807-816

Abstract

Children between the ages of 12 and 24 months who have autism spectrum disorder (ASD) experience abnormalities in the brain that result in undesirable symptoms. Children with ASD struggle to comprehend what others are trying to say and or feel, and they experience extreme anxiety in social situations. Additionally, they have a hard time making friends and even living independently. The defective genes, which control the brain and govern how brain cells communicate with one another, are the primary cause of ASD because they alter brain function. Our primary goal is to assist therapists and parents of children with ASD in using current technologies, such as human intelligence and artificial intelligence, to treat ASD and assist those youngsters in obtaining better social interaction and societal integration. For the purpose of doing an early analysis of ASD, the data is divided into the following three categories: age, gender, and jaundice symptoms. The performance of machine learning algorithms can be influenced by a variety of factors, such as the size of the dataset and quality of the dataset, the choice of features, and the tuning of hyper-parameters. In this work, the support vector machine (SVM) yields 96% as the highest classification accuracy.
Predicting autism spectrum disorder through sentiment analysis with attention mechanisms: a deep learning approach Mareeswaran, Murali Anand; Selvarajan, Kanchana
Indonesian Journal of Electrical Engineering and Computer Science Vol 37, No 1: January 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v37.i1.pp325-334

Abstract

Autism spectrum disorder (ASD) is considered a spectrum disorder. The availability of technology to identify the characteristics of ASD will have major implications for clinicians. In this article, we present a new autism diagnosis method based on attention mechanisms for behavior modeling-based feature embedding along with aspect-based analysis for a better classification of ASD. The hybrid model comprises a convolutional neural network (CNN) architecture that integrates two bidirectional long short-term memory (BiLSTM) blocks, together with additional propagation techniques, for the purpose of classification the origins of Autism Tweet dataset; the proposed work takes Autism Tweet dataset and preprocesses them to employ n-gram to extract features of which the features of the ASD behavior are fed to generate the significant behavior for classification. The model takes into account both behavior-guided features across every aspect of the Class/ASD to provide higher accuracy using Adam optimizer. The experimental values inferred that the n-BiLSTM technique reaches maximum accuracy with 98%.