Bouhsissin, Soukaina
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Artificial intelligence for choosing an agile method Merzouk, Soukaina; Bouhsissin, Soukaina; Hamim, Touria; Sael, Nawal; Marzak, Abdelaziz
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i2.pp1557-1566

Abstract

Agile methods are widely known in different companies, including information technology (IT) companies. They appeared intending to solve the problems of traditional methods while proposing an iterative and incremental cycle. These methods consist of four values and the twelve principles agreed upon in 2001 in a Manifesto. However, each method holds singularities from which it is difficult to choose one to adopt in different project cases. The selection of the method to adopt positively or negatively affects the final product following the criteria of the project and the personnel. Project experts must research and compare methods manually to make a choice, a thing that drains time, which is a key factor in project realization. Currently, there is no intelligent system or model that allows choosing the agile method to adopt for such a project. For this purpose, artificial intelligence (AI) techniques will be used to develop a Chatbot that allows reaching the aim. This Chatbot will be developed based on a decision tree model that will be proposed from an experimental study.
Driver inattention detection system using multi-task cascaded convolutional networks Soultana, Abdelfettah; Benabbou, Faouzia; Sael, Nawal; Bouhsissin, Soukaina
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i4.pp4249-4262

Abstract

Driver inattention has emerged as a critical concern impacting road safety, resulting in an alarming surge in accidents and fatalities. This research introduces a novel system for detecting inattention, structured across six levels: perception, facial feature extraction, tracking driver face, and driver secondary task using pre-trained deep learning models, inattention detection, risk estimation, and alert. The system is based on image processing captured from two strategically positioned cameras that simultaneously capture the driver’s activities while driving and their facial expressions. The second contribution concerns the driver facial features extraction using multi-task cascaded convolutional networks (MTCNN), and it is comparison with the histogram of gradient (HOG)-based frontal face detector, and haar feature based cascade classifier. The algorithms were compared based on their runtime efficiency, robustness in handling varying lighting conditions, and various head movements. The MTCNN achieves high performance, reaching accuracy levels ranging from 96.4% to 99.5% on two datasets including realistic driving scenarios: the DrivFace dataset and, the driver drowsiness dataset. The comparative analysis sheds light on the strengths and weaknesses of each algorithm, providing valuable insights for selecting the most suitable face detection algorithm to use in our system.
Enhancing machine learning algorithm performance through feature selection for driver behavior classification Bouhsissin, Soukaina; Sael, Nawal; Benabbou, Faouzia; Soultana, Abdelfettah
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 1: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i1.pp354-365

Abstract

Machine learning (ML) techniques empower computers to learn from data and make predictions or decisions in various domains, while preprocessing methods assist in cleaning and transforming data before it can be effectively utilized by ML. Feature selection in ML is a critical process that significantly influences the performance and effectiveness of models. By carefully choosing the most relevant and informative attributes from the dataset, feature selection enhances model accuracy, reduces overfitting, and minimizes computational complexity. In this study, we leverage the UAH-DriveSet dataset to classify driver behavior, employing Filter, embedded, and wrapper methods encompassing 10 distinct feature selection techniques. Through the utilization of diverse ML algorithms, we effectively categorize driver behavior into normal, drowsy, and aggressive classes. The second objective is to employ feature selection techniques to pinpoint the most influential features impacting driver behavior. As a results, random forest emerges as the top-performing classifier, achieving an impressive accuracy of 96.4% and an F1-score of 96.36% using backward feature selection in 7.43 s, while K-nearest neighbour (K-NN) attains an accuracy of 96.29% with forward feature selection in 0.05 s. Following our comprehensive results, we deduce that the primary influential features for studying driver behavior include speed (km/h), course, yaw, impact time, road width, distance to the ahead vehicle, vehicle position, and number of detected vehicles.