Edderbali, Fatima
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Transfer learning for epilepsy detection using spectrogram images Edderbali, Fatima; Harmouchi, Mohammed; Essoukaki, Elmaati
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i1.pp1022-1029

Abstract

Epilepsy stands out as one of the common neurological diseases. The neural activity of the brain is observed using electroencephalography (EEG). Manual inspection of EEG brain signals is a slow and arduous process, which puts heavy load on neurologists and affects their performance. The aim of this study is to find the best result of classification using the transfer learning model that automatically identify the epileptic and the normal activity, to classify EEG signals by using images of spectrogram which represents the percentage of energy for each coefficient of the continuous wavelet. Dataset includes the EEG signals recorded at monitoring unit of epilepsy used in this study to presents an application of transfer learning by comparing three models Alexnet, visual geometry group (VGG19) and residual neural network ResNet using different combinations with seven different classifiers. This study tested the models and reached a different value of accuracy and other metrics used to judge their performances, and as a result the best combination has been achieved with ResNet combined with support vector machine (SVM) classifier that classified EEG signals with a high success rate using multiple performance metrics such as 97.22% accuracy and 2.78% the value of the error rate.
New technic of transfer learning for detecting epilepsy by EfficientNet and DarkNet models Edderbali, Fatima; El Malali, Hamid; Essoukaki, Elmaati; Harmouchi, Mohammed
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 1: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i1.pp345-352

Abstract

Epileptic seizures are one of the most prevalent brain disorders in the world. Electroencephalography (EEG) signal analysis is used to distinguish between normal and epileptic brain activity. To date, automatic diagnosis remains a highly relevant and significant research topic which can help in this task, especially considering that such diagnosis requires a significant amount of time to be carried out by an expert. As a result, the need for an effective seizure approach capable to classify the normal and epileptic brain signal automatically is crucial. In this perspective, this work proposes a deep neural network approach using transfer learning to classify spectrogram images that have been extracted from EEG signals. Initially, spectrogram images have been extracted and used as input to pre-trained models, and a second refinement is performed on certain feature extraction layers that were previously frozen. The EfficientNet and DarkNet networks are used. To overcome the lack of data, data augmentation was also carried out. The proposed work performed excellently, as assessed by multiple metrics, such as the 0.99 accuracy achieved with EfficientNet combined with a support vector machine (SVM) classifier.