Claim Missing Document
Check
Articles

Found 2 Documents
Search

Moving objects detection based on histogram of oriented gradient algorithm chip for hazy environment Sharma, Monika; Kaswan, Kuldeep Singh; Yadav, Dileep Kumar
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 13, No 3: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijres.v13.i3.pp604-615

Abstract

The most important aspects of computer vision are moving object detection (MOD) and tracking. Many signal-processing applications use regional image statistics. Compute-intensive video and image processing with low latency and high throughput is done with field programmable gate array (FPGA) image processing. Local image statistics are used for edge identification and filtering. The histogram of oriented gradients (HoG) algorithm extracts local shape characteristics by equalizing histograms. The objective of the work is to design the hardware chip of the algorithm and perform the simulation in the Xilinx ISE 14.7 simulation environment. The performance of the chip is evaluated in Modelsim 10.0 simulation software to check its feasibility. The performance of the chip design is estimated on Viretx-5 FPGA and compared with the MATLAB-2020 image processing tool-based response time. This form of tracking typically deals with identifying, anchoring, and tracking images and videos. A mask made from a cut-out of the object can then determine the plane's coordinates depending on its position. This type of object tracking is frequently utilized in the field of augmented reality (AR). The algorithm is most suited for object detection using hardware controllers in haze and foggy environments.
Performance comparison of optical flow and background subtraction and discrete wavelet transform methods for moving objects Sharma, Monika; Kaswan, Kuldeep Singh; Yadav, Dileep Kumar
IAES International Journal of Robotics and Automation (IJRA) Vol 14, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v14i1.pp93-102

Abstract

Self-driving cars and other autonomous vehicles rely on systems that can recognize and follow objects. The ways help people make safe decisions and navigate by showing things like people, cars, obstacles, and traffic lights. Computer vision algorithms encompass both object detection and tracking. Different methods are specifically developed for picture or video analysis not only to identify items within the visual content but also to accurately determine their precise locations. This can operate independently as an algorithm or as a constituent of an item-tracking system. Object tracking algorithms can be used to follow objects over video frames, providing a contrasting approach. The research article focuses on the mathematical model simulation of optical flow, background subtraction, and discrete wavelet transform (DWT) methods for moving objects. The performance evaluation of the methods is done based on simulation response time, accuracy, sensitivity, and specificity doe several images in different environments. The DWT has shown optimal behavior in terms of the response time of 0.27 seconds, accuracy of 95.34 %, selectivity of 95.96 %, and specificity of 94.68 %.