Mustopa, Ali
Universitas Bina Sarana Informatika

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Convolutional Neural Networks for Classification of Lung Cancer Based on Histopathological Images Agustiani, Sarifah; Pribadi, Denny; Junaidi, Agus; Wildah, Siti Khotimatul; Mustopa, Ali; Arifin, Yoseph Tajul
Telematika Vol 16, No 2: August (2023)
Publisher : Universitas Amikom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35671/telematika.v16i2.2356

Abstract

Lung cancer is one of the deadliest types of cancer characterized by the uncontrolled growth of cancer cells in the lung tissue due to the accumulation of carcinogens. Lung cancer ranks second in the most cases with 2.206 million new cases and ranks first in deaths. This lung cancer often does not cause symptoms in the early stages, because it only appears after the tumor is large enough or the cancer has spread to surrounding tissues or organs, so it is necessary to have early detests to prevent severity and determine follow-up treatment. This study aims to classify lung cancers using digital pathology images with data of 15000 images obtained from the LC25000 dataset containing 5,000 images for each class. The method used in this classification process uses convolutional neural networks (CNN) which is one of the implementations of Deep Learning used for digital image processing. Using this method, the doctor can diagnose and find out the type of lung cancer quickly without spending much time. Thus, the faster the prediction results received by the doctor / health expert, the faster the next action or handler will be, this study produces a fairly accurate accuracy value even though it uses a shallow CNN architecture because it only consists of 5 layers with 3 convolution layers and 2 fully connected layers, with the resulting accuracy value of 98.53%.
Pengembangan Sistem Informasi Manajemen Arsip Tidak Aktif Menggunakan Metode Agile Mustopa, Ali; Maulana, Muhammad Sony; Nurmalasari, Nurmalasari; Bedong, Adrianus Ixnasius; Nurjannah, Nurjannah
Progresif: Jurnal Ilmiah Komputer Vol 21, No 1: Februari 2025
Publisher : STMIK Banjarbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35889/progresif.v21i1.2500

Abstract

The management of inactive records in government institutions often faces challenges such as limited storage space, difficulties in document retrieval, and the risk of physical damage. This study aims to develop a digital-based Inactive Records Management Information System (SIMATA) as a solution to these problems. The Agile Method was applied in the development process, which included the stages of Planning, Design, Development, Testing, Deployment, and Review. SIMATA is designed to support record digitization, cloud-based storage, and fast and accurate document retrieval. Testing results indicate that the system can improve record management efficiency by up to 50%, reduce physical storage costs, and provide better document accessibility. The evaluation using the System Usability Scale (SUS) resulted in an average score of 82.14 (B+ category, Excellent), reflecting a high level of usability. With its integrated features, SIMATA is considered relevant for enhancing work efficiency and modernizing record management at the West Kalimantan Library and Archives Office. This study highlights the importance of digitization in improving the effectiveness of records management in government institutions.Keywords: Records Management; Inactive Records; Record Digitization; Agile Method; System Usability Scale  AbstrakPengelolaan arsip tidak aktif di instansi pemerintah sering menghadapi kendala seperti keterbatasan ruang penyimpanan, kesulitan dalam penelusuran dokumen, dan risiko kerusakan fisik dokumen. Penelitian ini bertujuan untuk mengembangkan Sistem Informasi Manajemen Arsip Tidak Aktif (SIMATA) berbasis digital sebagai solusi untuk mengatasi masalah tersebut. Pendekatan Metode Agile digunakan dalam pengembangan meliputi tahapan Perencanaan, Desain, Pengembangan, Pengujian, Penerapan dan Peninjauan. SIMATA dirancang untuk mendukung digitalisasi arsip, penyimpanan berbasis cloud, dan pencarian dokumen yang cepat dan akurat. Hasil pengujian menunjukkan bahwa sistem ini mampu meningkatkan efisiensi pengelolaan arsip hingga 50%, menurunkan biaya penyimpanan fisik, dan memberikan aksesibilitas dokumen yang lebih baik. Evaluasi menggunakan System Usability Scale (SUS) menghasilkan skor rata-rata 82,14 (kategori B+, Excellent), yang menunjukkan tingkat kegunaan yang tinggi. Dengan fitur yang terintegrasi, SIMATA dinilai relevan untuk mendukung efisiensi kerja dan modernisasi pengelolaan arsip Dinas Perpustakaan dan Kearsipan Kalimantan Barat. Penelitian menegaskan pentingnya digitalisasi dalam meningkatkan efektivitas manajemen arsip di instansi pemerintah.Kata kunci: Pengelolaan Arsip; Arsip Tidak Aktif; Digitalisasi Arsip; Metode Agile; System Usability Scale