Claim Missing Document
Check
Articles

Found 2 Documents
Search

Metamorphic Complex Deformation in North Bangka Island Based on Macrostructures and Microstructures Evidences Hendrawan, Rezki; Draniswari, Windi Anarta; Wahyuni, Fitri Indah; Sapiie, Benjamin; Basuki, Nurcahyo Indro
Journal of Geoscience, Engineering, Environment, and Technology Vol. 9 No. 2 (2024): JGEET Vol 09 No 02 : June (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2024.9.2.13379

Abstract

The northern Bangka Island is composed of Pemali metamorphic complex which is indicated by the collision between Indochina and Sibumasu blocks. These features are interesting to observe because the metamorphic rocks could be recorded in some geological structures at different times. The study began by conducting field observation on Pemali Metamorphic Complex as objects. Field observation aims to collect lithological data, structural data, and oriented rock samples. The results of field pitching were processed to determine macrostructures, microstructures, and mineral distribution. The data was analyzed based on kinematic, descriptive, and deformation mechanisms to determine the deformation patterns that occurred in the study area. Field and oriented thin section data show structures and occurred in different deformation conditions. The analysis based on macrostructures and microstructures showed that the northern part of Bangka Island experienced three different deformation phases. Deformation begins with the formation of folds that are associated with collisions between Sibumasu-Indochina, followed by a second deformation that forms a fold with different verging. Both deformations are formed in the ductile zone and the brittle-ductile transition zone. The third deformation occurs when rocks have been lifted to the surface by the presence of faults, joints, and veins. The sequence of the deformation model is similar to the deformation experienced in the Bentong-Raub suture zone formed in the shear zone.
The Importance of Reservoir Geomechanic Modelling for Carbon Sequestration, Storage, and Utilization: A Case Study from East Natuna Cherdasa, Jeres Rorym; Ariadji, Tutuka; Sapiie, Benjamin; Siagian, Ucok W.R.
Indonesian Journal on Geoscience Vol. 11 No. 2 (2024)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.11.2.269-293

Abstract

East Natuna is well known for its huge natural gas reserves with a very high CO2 content. The appearance of CO2 content in an oil and gas field is always considered as waste material, and will severely affect the economic value of the field. The higher the content, the more costly the process, both technically and environmentally. In this research, the newly proposed reservoir management approach called CSSU (Carbon Sequestration, Storage, and Utilization) method is trying to be applied to change the paradigm of CO2 from waste material into economic material. The CSSU method is an integration of geological, geophysical, reservoir engineering, and engineering economics with the determination of technical and economic optimization of the use of CO2 produced as the working fluid in a power generation system that has been conditioned through an injection-production system in geological formations. Reservoir simulation modeling is done by three models, namely: Compositional, Compositional + Geomechanical Coupling, and Compositional + Geomechanical Coupling + Thermal. There is a difference in the the total injection between Compositional + Geomechanical Coupling and ordinary Compositional simulations of 1-2 % due to factors such as Modulus Young, Poisson's Ratio, Angle of Internal Friction, and Biot's Coefficient which affect the reservoir pore volume calculations and the total CO2 fluid injection calculation. The changes in geomechanical parameters will affect the CSSU techno-economic analysis where a 30 % change in the rock compressibility and poisson ratio parameters will effect changes in the electrical energy amounts being produced by 0.01 MW or 0.33 %, and in an economic value of 4 MMUS $ or 2.24 %.