Kumar, Mugachintala Dilip
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Dual axis solar tracking system Kumar, Mugachintala Dilip; Kumar, Tenugu Manish; Akshay, Kongari; Kumar, Sowdapuram Yashwanth; Vikas, Udutha
International Journal of Applied Power Engineering (IJAPE) Vol 12, No 4: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v12.i4.pp391-398

Abstract

Now a days, many people use solar photovoltaic systems since they generate efficient and clean energy. Polycrystalline and monocrystalline silicon modules are currently the most widely used products in the solar industry. Aside from possessing a flawless lattice structure, a high level of material purity, a low grain boundary energy, a weak internal resistance, and a high level of efficiency, monocrystalline silicon cells also have a uniform colour and a lack of spots, which contribute to its good aesthetic appeal. By placing the solar panels at the precise angle and direction specified by the motion of the sun, the system's efficiency can be increased. The solar tracking system for this research project uses LDR sensors that are connected to a microcontroller to track the sun's horizontal and vertical axes, while DHT11 and rain sensors are used to track the weather. This study offers a method for repositioning a solar array so that it faces the sun at all times. Since solar modules effectively convert sunlight into electricity, they are helpful solutions to the problem of power generation in remote areas. A microprocessor is used in the construction of such a system to operate a motor and sensor.
Efficiency enhancement in hybrid renewable energy system using polycrystalline silicon cell Kumar, Mugachintala Dilip; Himabindu, D.; Kumar, Yarrem Narasimhulu Vijaya; Mohana, Thota; Shashank, Ramagiri; Rajanna, Bodapati Venkata
International Journal of Applied Power Engineering (IJAPE) Vol 13, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v13.i3.pp679-686

Abstract

Accessing the unelectrified rural population is currently not possible through grid expansion, as connectivity is neither economically viable nor encouraged by large companies. Additionally, conventional energy options, such as broom-based systems, are being gradually phased out of rural development programs because to growing oil prices and the unbearable effects of this energy source on consumers and the environment. A hybrid generator using solar and wind can solve this issue. Proven hybrid systems are the best choice for delivering high-quality power. Nowadays, hybrid renewable energy systems are becoming popular. The power system provides electricity to remote and isolated areas. Villages and residents in the forest area had their electricity cut off due to the forest environment. While creating a renewable energy source near the load. Solar power and wind power are renewable sources, solar power works in the morning and wind can make morning and night time to synchronize both output voltage and frequency to provide provides the ability to charge continuously, without interruption. The main objective of the project is to provide mixed renewable energy without interruption.