Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analysis, design, and control of standalone PV based boost DC-AC converter Nayak, Jnanaranjan; Kumar, Sunil; Sahu, Pradeep Kumar; Jena, Satyaranjan
International Journal of Applied Power Engineering (IJAPE) Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v13.i2.pp294-302

Abstract

This paper presents a new control scheme for a boost DC–AC converter which is used for solar power applications. The proposed DC-AC converter configuration can produce an AC voltage level across the output or load side greater than input DC voltage based on the operating duty cycle. Generally, the conventional DC-AC converter or voltage source inverter (VSI) generates AC voltage which is less than input DC voltage. Maintaining a constant voltage across the load with improved dynamic performance is challenging for anyone for the solar photovoltaic (PV) system. A dual-loop sliding mode control is proposed for the boost VSI to address the above issues. The proposed controller has robust in nature against the wide fluctuation in the plant or load parameters. The design, analysis and control of the boost DC-AC converter are briefly discussed in this paper. This topology can be broadly used in solar powered uninterruptible power supply (UPS) where boosting operation is essential for low voltage solar PV system. This topology eliminates the DC boosting power processing stage which leads an improved efficiency of the overall system. The MATLAB/Simulink results are presented to highlight the above issues.
Dual-aware EV charging scheduling with traffic integration Yadav, Maneesh; Jena, Satyaranjan; Panigrahi, Chinmoy Kumar; Pati, Ranjan Keshari; Sahu, Jayanta Kumar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1446-1456

Abstract

Electric vehicle adoption is a trend in many countries, and the demand for charging station infrastructure is at a rapid pace. The placement of charging stations is the key research topic of many researchers, but charging scheduling is also a problem that is going to rise in the near future. The proper charger utilization, maintaining coordination between charging stations, and satisfying users' demands are some of the key challenges. The traffic pattern is uncertain, coordination of distances between charging stations and users is done by Euclidean distance. The traffic-aware fair charging scheduling (TAFCS) strategy is proposed, which will have a balance on charger utilization and user prioritization, and keep the fairness by equal distribution of electric vehicles among all the charging stations having a centralized charging system monitored by an aggregator. The distribution of the traffic pattern of electric vehicles is performed by Monte Carlo simulation. The proposed system is tested on the IEEE 33 bus standard system using the predefined voltage limits of each bus and limiting power loss to lessen its burden. The discharging process of 50 electric vehicles (V2G) is performed by optimal placement by obtaining the weakest buses, which makes it an intelligent distribution system. This proposed charging framework is validated on MATLAB R2020a.