Balasubramanian, Ganapathy
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Weighted sum method based multi-objective optimal power flow considering various objectives: an application of whale optimization algorithm Naidu, Tentu Papi; Balasubramanian, Ganapathy; Bathina, Venkateswara Rao
International Journal of Applied Power Engineering (IJAPE) Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v13.i4.pp963-972

Abstract

Nowadays, multi-objective optimization plays a vital role in solving optimal power flow problems. Multi-objective optimal power flow (MOOPF) is a nonlinear optimization problem aimed at optimizing control variables while balancing multiple objective functions and satisfying both equality and inequality constraints and addresses this by integrating two more objectives into a single objective using a weighting factor. In this paper this weighted sum type multi-objective technique has been used to formulate the objective function. The whale optimization algorithm (WOA) has been used to reduce the cost, emission, losses, and voltage stability by considering various multi objectives like fuel cost along with emission, fuel cost with losses, fuel cost with voltage stability, fuel cost with voltage deviation and finally fuel cost with emission, losses, voltage deviation. In this paper, the IEEE 30 bus structure has been used to analyze the effect of WOA on the improvement of system performance. Obtained results with WOA have been compared with other optimization techniques like ensemble constraint handling technique with differential evolution (ECHT-DE), the superiority of feasible differential evolution (SF-DE), moth swarm algorithm (MSA), and moth-flame optimization (MFO), available in the literature.