Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALISIS EFEKTIFITAS APLIKASI YOUTUBE DALAM PENYEBARAN AGAMA ISLAM Felan Rhesnandia Satgas Putra; Muhammad Syaifudin Afandi; Nugraini Dewi Puspitasari; Athoul Maula Arrohima; Saifuddin Zuhri
Tashdiq: Jurnal Kajian Agama dan Dakwah Vol. 4 No. 2 (2024): Tashdiq: Jurnal Kajian Agama dan Dakwah
Publisher : Cahaya Ilmu Bangsa Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.4236/tashdiq.v4i2.3527

Abstract

Penelitian ini bertujuan untuk menganalisis efektivitas aplikasi YouTube sebagai media dalam penyebaran agama Islam. Dalam era digital, media sosial telah menjadi alat penting dalam menyebarkan informasi dan pengajaran agama. Melalui pendekatan kuantitatif dan kualitatif, penelitian ini mengukur sejauh mana YouTube berhasil mencapai audiens yang lebih luas dan mendalam dalam konteks penyebaran agama Islam. Data dikumpulkan melalui survei, wawancara, dan analisis konten dari beberapa kanal YouTube populer yang fokus pada materi keislaman. Hasil penelitian menunjukkan bahwa YouTube mempunyai potensi cukup besar dalam meningkatkan pemahaman dan kesadaran beragama, meskipun terdapat tantangan dalam memastikan konten yang akurat dan sesuai dengan ajaran Islam.
Decision Support System For Community Welfare Assessment Using Fuzzy Logic Mamdani In Ponorogo Regency Nugraini Dewi Puspitasari; Mawadah, Divia Astrina; Anggraini Puspita Sari*
Jurnal Riset Informatika Vol. 7 No. 4 (2025): September 2025
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34288/jri.v7i4.407

Abstract

The inequality of public welfare is still an important issue in various regions, including Ponorogo Regency. Manual determination of welfare levels often leads to inaccuracies due to subjectivity and limited data coverage. This study develops a Decision Support System (DSS) based on the Mamdani fuzzy logic method to objectively classify the level of community welfare in Ponorogo Regency. The system was built using Python and Streamlit, utilizing secondary data from the Central Statistics Agency (BPS) covering 14 indicators in the education, health, and demographic sectors across 21 sub-districts. The classification results group the sub-districts into three categories: low, medium, and high welfare. Of the 21 sub-districts, seven are classified as high, thirteen as medium, and one as low. The system achieves an accuracy rate of 80.95% when compared to ground truth data, indicating its reliability in reflecting real conditions. To complement this analysis, the Analytical Hierarchy Process (AHP) was applied to determine the relative importance of the indicators, resulting in education (0.54) as the most influential criterion, followed by health (0.30) and demographics (0.16). These findings show that the fuzzy Mamdani method is more suitable for data-driven classification, while AHP provides complementary insights into indicator prioritization. Therefore, this system offers not only a technical tool but also a strategic resource for evidence-based policy formulation by local governments.