Claim Missing Document
Check
Articles

Found 3 Documents
Search

Sintesis dan Karakterisasi Hidroksiapatit Cangkang Rajungan dengan Variasi Suhu Kalsinasi dan Konsentasi KH2PO4 menggunakan Metode Presipitasi Sebagai Sediaan Biomaterial Implan Tulang Romadhona, Novelia Gita; Syafira, Nesha Permata; Gumelar, Tobing; Rizqiyah, Vita Fatichah; Ningrum, Eva Oktavia
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2023: PROSIDING SNTKK 2023
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Bone implants are mostly made of non-degradable metal materials that are toxic to the body. An alternative biodegradable material being developed is Poly-L-Lactic Acid (PLLA). However, PLLA has the disadvantage of being incompatible with bone tissue. So, materials that are biodegradable and biocompatible are needed, such as hydroxyapatite, which has similarities with the minerals in bone and teeth, it suitable as an alternative biomaterial in the biomedical. This research aims to determine the effect of synthesis conditions, with calcination temperature (850, 900, 950, 1000°C) and KH2PO4 concentration (0.25, 0.5, 0.75, 1 M), on the production of hydroxyapatite using raw materials from local blue crab shells, in terms of calcium content, functional group presence, and conformity of hydroxyapatite peaks with JCPDS 09-0432. The synthesized product was characterized using XRF, which showed a relatively high calcium in crab shells of 94.89% at calcination temperature 850°C. The FTIR test results after the mixing of KH2PO4 with CaO showed the formation of hydroxyapatite functional groups, namely OH- and PO43-, in all variables. The XRD test results showed that at 850°C and KH2PO4 concentration of 0.75 M the main peak of hydroxyapatite was closest to JCPDS 09-0432, at a diffraction angle (2θ) of 31.7634.
Green Extraction of Microcrystalline Cellulose from Cabbage Waste (Brassica Oleracea L.) via Steam Explosion Under Pressurized and Non-Pressurized Nitrogen (N2) Syafira, Nesha Permata; Airlangga, Bramantyo; Sumarno
Eksergi Vol 22 No 2 (2025)
Publisher : Prodi Teknik Kimia, Fakultas Teknik Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/eksergi.v22i2.14826

Abstract

Agricultural residues such as cabbage waste (Brassica oleracea L.) are rich in cellulose and offer promising potential for sustainable microcrystalline cellulose (MCC) production. This study aims to extract and characterize MCC from cabbage waste using an environmentally friendly approach that combines high-speed blending, low-concentration oxalic acid hydrolysis (0–2% w/v), and steam explosion at 130 °C for 15 minutes, under both pressurized and non-pressurized nitrogen (N₂) atmospheres. The application of pressurized N₂ significantly improved delignification efficiency and preserved cellulose crystallinity. The optimal treatment (2% oxalic acid with N₂) yielded a cellulose content of 79.18%, with hemicellulose and lignin contents reduced to 15.28% and 0.10%, respectively. FTIR analysis confirmed the effective removal of non-cellulosic components, while XRD analysis revealed a crystallinity index 66%, which is high compared to typical MCC values from other biowastes (~50–60%). SEM revealed clean and well-dispersed fiber morphology. These results indicate that oxalic acid combined with N₂-assisted steam explosion is an effective and eco-friendly method for producing MCC. This approach minimizes chemical use and oxidation, making it suitable for pharmaceutical excipients, biodegradable composites, and other green material applications. Overall, the process aligns with circular economy principles and contributes to the Sustainable Development Goals (SDGs).
Sintesis dan Karakterisasi Hidroksiapatit Cangkang Rajungan dengan Variasi Suhu Kalsinasi dan Konsentasi KH2PO4 menggunakan Metode Presipitasi Sebagai Sediaan Biomaterial Implan Tulang Romadhona, Novelia Gita; Syafira, Nesha Permata; Gumelar, Tobing; Rizqiyah, Vita Fatichah; Ningrum, Eva Oktavia
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2023: PROSIDING SNTKK 2023
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Bone implants are mostly made of non-degradable metal materials that are toxic to the body. An alternative biodegradable material being developed is Poly-L-Lactic Acid (PLLA). However, PLLA has the disadvantage of being incompatible with bone tissue. So, materials that are biodegradable and biocompatible are needed, such as hydroxyapatite, which has similarities with the minerals in bone and teeth, it suitable as an alternative biomaterial in the biomedical. This research aims to determine the effect of synthesis conditions, with calcination temperature (850, 900, 950, 1000°C) and KH2PO4 concentration (0.25, 0.5, 0.75, 1 M), on the production of hydroxyapatite using raw materials from local blue crab shells, in terms of calcium content, functional group presence, and conformity of hydroxyapatite peaks with JCPDS 09-0432. The synthesized product was characterized using XRF, which showed a relatively high calcium in crab shells of 94.89% at calcination temperature 850°C. The FTIR test results after the mixing of KH2PO4 with CaO showed the formation of hydroxyapatite functional groups, namely OH- and PO43-, in all variables. The XRD test results showed that at 850°C and KH2PO4 concentration of 0.75 M the main peak of hydroxyapatite was closest to JCPDS 09-0432, at a diffraction angle (2θ) of 31.7634.