Fadhilah, Marwan
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Smart measurement and monitoring system for aquaculture fisheries with IoT-based telemetry system Megantoro, Prisma; Anugrah, Antik Widi; Abdillah, Muhammad Hudzaifah; Kustanto, Bambang Joko; Fadhilah, Marwan; Vigneshwaran, Pandi
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.6900

Abstract

The instrumentation design of an online monitoring device for aquaculture media is discussed in this article. The main processor in this internet of things (IoT) real-time telemetry system is an ESP32 board. Temperature, acidity level, conductivity level, dissolved oxygen (DO) level, and degree of oxygen reduction in the water were the aquaculture parameters measured. The ESP32 collects data from each sensor, groups it into a dataset, displays it on the LCD, saves it to the SD card, and then uploads it to the real-time database. In addition, an Android application is being developed for users. This device has been tested to ensure that each measured parameter is accurate and precise. The accuracy test, one of the major results of laboratory scale tests, demonstrates that each parameter has a different measurement error that represents with average error absolute. Six tested sensors/instruments were subjected to the test. Average absolute error for temperature sensor is +0.76%, pH sensor is +1.52%, electrical conductivity (EC) sensor is +10.8%, oxidation reduction potential (ORP) sensor is +14.6%, DO sensor is +9.3%, and total dissolve solids (TDS) sensor is +13.2%. This device is very dependable and convenient for monitoring the condition of aquaculture media in real-time and accurately.
Modelling and simulation of maximum power point tracking on partial shaded PV based-on a physical phenomenon-inspired metaheuristic algorithm Megantoro, Prisma; Dona Saya, Joy Sefine; Syahbani, Muhammad Akbar; Fadhilah, Marwan; Vigneshwaran, Pandi
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i3.pp1923-1937

Abstract

Maximum power point tracking (MPPT) is a technique to optimize the photovoltaic (PV) current generation, so it can improve the efficiency of solar energy harvesting. MPPT works by searching the voltage which generates the maximum power, called the maximum power point (MPP). MPP value changes by the fluctuance of ambient temperature and solar insolation level depicted by the I-V curve. Searching the MPP will be more complex if the partial shading is happened. The effect of partial shading will rise to more than one local MPPs. In this research, an optimization algorithm is modeled and simulated the MPPT technique in partial shading. The optimization uses the new metaheuristic algorithm which inspired from a physical phenomenon, called Archimedes optimization algorithm (AOA). The AOA uses mathematical modeling which has convergence capabilities, balanced exploration, and exploitation and is suitable for solving complex optimization technique, like MPPT. The research used varies partial insolation percentage. The implementation of MPPT-AOA compared to other metaheuristic algorithms to analysis its performance in the aspect of PV system parameters and tracking process parameters. The simulation result shows that the AOA can enrich the MPPT technique and improve the solar energy harvesting which is superior to other algorithms.