Claim Missing Document
Check
Articles

Found 2 Documents
Search

A highly scalable CF recommendation system using ontology and SVD-based incremental approach Mhammedi, Sajida; Gherabi, Noreddine; El Massari, Hakim; Sabouri, Zineb; Amnai, Mohamed
Bulletin of Electrical Engineering and Informatics Vol 12, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i6.6261

Abstract

In recent years, the need of recommender systems has increased to enhance user engagement, provide personalized services, and increase revenue, especially in the online shopping industry where vast amounts of customer data are generated. Collaborative filtering (CF) is the most widely used and effective approach for generating appropriate recommendations. However, the current CF approach has limitations in addressing common recommendation problems such as data inaccuracy recommendations, sparsity, scalability, and significant errors in prediction. To overcome these challenges, this study proposes a novel hybrid CF method for movie recommendations that combines the incremental singular value decomposition approach with an item-based ontological semantic filtering approach in two phases, online and offline. The ontology-based technique is leveraged to enhance the accuracy of predictions and recommendations. Evaluating our method on a real-world movie recommendation dataset using precision, F1 scores, and mean absolute error (MAE) demonstrates that our system generates accurate predictions while addressing sparsity and scalability issues in recommendation system. Additionally, our method has the advantage of reduced running time.
Comparative analysis of machine learning models for fake news detection in social media Eddine Elbaghazaoui, Bahaa; Amnai, Mohamed; Fakhri, Youssef; Choukri, Ali; Gherabi, Noreddine
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i3.pp1951-1959

Abstract

The rapid rise of information sharing on social media has amplified the spread of fake news, making its detection increasingly critical. As fake news continues to proliferate, the need for efficient detection mechanisms has become more urgent to protect users from misinformation and disinformation. This paper presents a comparative analysis of multiple machine learning models for detecting text based fake news on social media platforms. Using models such as gradient boosting, XGBoost, and linear support vector classifier (SVC) on the Infor mation Security and Object Technology (ISOT) fake news dataset, the study demonstrates that gradient boosting achieves the highest accuracy of 99.61%, while XGBoost provides a strong balance with 99.59% accuracy and a signifi cantly lower execution time, making it more suitable for real-time applications. These results offer valuable insights into the trade-offs between accuracy and computational efficiency, contributing to the development of more practical de tection systems and future research in the field.