Omran, Lamia Nabil
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Automatic liver segmentation in computed tomography scans using deep semantic segmentation Ezzat, Kadry Ali; Omran, Lamia Nabil; Seddawy, Ahmed Ibrahim Bahgat El
Bulletin of Electrical Engineering and Informatics Vol 12, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i1.4022

Abstract

Division of the liver from figured computed tomography (CT) images is fundamental for the greater part of the PC supported clinical applications, for instance, the arranging period of a liver transfer, liver volume assessment, and radiotherapy. In this paper, a programmed liver location model from clinical CT filters utilizing profound semantic division convolutional neural organization will be introduced, this model will actually want to subsequently isolate the liver utilizing CT images. The proposed model presents simultaneously the liver ID and the probabilistic division utilizing a profound convolutional neural organization. The proposed approach was endorsed on 10 CT volumes taken from open data sets 3Dircadb1. The proposed model is totally programmed with no requirement for client mediation. Quantitative results show that proposed model is reliable and exact for hepatic volume assessment in a clinical course of action with testing exactness 98.8%.