Hasbullah, Iznan H.
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

An efficient intrusion detection systems in fog computing using forward selection and BiLSTM Abu Zwayed, Fadi; Anbar, Mohammed; Manickam, Selvakumar; Sanjalawe, Yousef; Alrababah, Hamza; Hasbullah, Iznan H.; Almi’ani, Noor
Bulletin of Electrical Engineering and Informatics Vol 13, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i4.7143

Abstract

Intrusion detection systems (IDS) play a pivotal role in network security and anomaly detection and are significantly impacted by the feature selection (FS) process. As a significant task in machine learning and data analysis, FS is directed toward pinpointing a subset of pertinent features that primarily influence the target variable. This paper proposes an innovative approach to FS, leveraging the forward selection search algorithm with hybrid objective/fitness functions such as correlation, entropy, and variance. The approach is evaluated using the BoT-IoT and TON_IoT datasets. By employing the proposed methodology, our bidirectional long-short term memory (BiLSTM) model achieved an accuracy of 98.42% on the TON_IoT dataset and 98.7% on the BoT-IoT dataset. This superior classification accuracy underscores the efficacy of the synergized BiLSTM deep learning model and the innovative FS approach. The study accentuates the potency of the proposed hybrid approach in FS for IDS and highlights its substantial contribution to achieving high classification performance in internet of things (IoT) network traffic analysis.
Secure map-based crypto-stego technique based on mac address Kasasbeh, Dima S.; Al-Ja’afreh, Bushra M.; Anbar, Mohammed; Hasbullah, Iznan H.; Al Khasawneh, Mahmoud
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.7140

Abstract

Steganography and cryptography are spy craft cousins, working differently to achieve the same target. Cryptography is perceptible and observable without understanding the real content, while steganography hides the content so that it is not perceptible or observable and without producing noticeable changes to the carrier image. The challenge is finding the right balance between security and retrievability of embedded data from embedding locations without increasing the required embedded information. This paper proposes a secure map-based steganography technique to enhance the message security level based on the sender and recipient mac addresses. The proposed technique uses rivest-shamir-adleman (RSA) to encrypt the message, then embeds the cipher message in the host image based on the sender and recipient media access control addresses (mac addresses) exclusive or operation "XOR" results without increasing the required embedded information for the embedding location map. The proposed technique is evaluated on various metrics, including peak signal-to-noise ratio (PSNR) and embedding capacity, and the results show that it provides a high level of security and robustness against attacks without an extra location map. The proposed technique can embed more data up to 196.608 KB in the same image with a PSNR higher than 50.58 dB.
A deep learning approach to detect DDoS flooding attacks on SDN controller Bahashwan, Abdullah Ahmed; Anbar, Mohammed; Manickam, Selvakumar; Al-Amiedy, Taief Alaa; Hasbullah, Iznan H.
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp1245-1255

Abstract

Software-defined networking (SDN), integrated into technologies like internet of things (IoT), cloud computing, and big data, is a key component of the fourth industrial revolution. However, its deployment introduces security challenges that can undermine its effectiveness. This highlights the urgent need for security-focused SDN solutions, driving advancements in SDN technology. The absence of inherent security countermeasures in the SDN controller makes it vulnerable to distributed denial of service (DDoS) attacks, which pose a significant and pervasive threat. These attacks specifically target the controller, disrupting services for legitimate users and depleting its resources, including bandwidth, memory, and processing power. This research aims to develop an effective deep learning (DL) approach to detect such attacks, ensuring the availability, integrity, and consistency of SDN network functions. The proposed DL detection approach achieves 98.068% accuracy, 98.085% precision, 98.067% recall, 98.057% F1-score, 1.34% false positive rate (FPR), and 1.713% detection time.