Abdul Samad, Nor Hafiza
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Machine learning prediction for academic misconduct prediction: an analysis of binary classification metrics Masrom, Suraya; Abdul Samad, Nor Hafiza; Septiyanti, Ratna; Roslan, Nurshafinas; Rahman, Rahayu Abdul
Bulletin of Electrical Engineering and Informatics Vol 13, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i1.5629

Abstract

Academic misconduct is unethical behavior in academic work. To sustain integrity culture and mitigating unethical conducts among higher education institutions community, the academic misconduct detection must be done at an earlier stage. Thus, this study attempted to provide a new empirical contribution with the analysis of binary classification performances metrics to describe the ability of machine learning in predicting academic misconduct. Four machine learning algorithms have been used namely generalized linear model (GLM), logistic regression (LR), decision tree (DT), and random forest (RF). Beside performances comparison, this paper presents the analysis of academic misconduct factors that were constructed based on demography and fraud triangle theory (FTT). The findings showed that all the four machine learning algorithms have obtained good ability in the prediction models with the accuracy at above 80% and below 20% of the classification errors. Rationalization from the FTT attributes has shown as the most important factor in GLM, LR, and DT. In RF, opportunity of FTT attributes have become the most important. Compared to FTT attributes, demography attributes were not providing much benefits to all the machine learning models but remain applicable at very low weight correlations.
Predicting the intention to adopt e-zakat payment services: a machine learning approach Abdul Samad, Nor Hafiza; Abdul Rahman, Rahayu; Masrom, Suraya; Omar, Norliana; Che Hasan, Haslinawati
Bulletin of Electrical Engineering and Informatics Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i3.8512

Abstract

The technology evolution in the zakat collection and payment services has brought about a profound transformation in the global processes of gathering and distributing charitable contributions. Despite witnessing a positive trend in annual zakat collection in Malaysia, it has yet to reach its optimal level. Therefore, predictions regarding performance and comparisons across multiple models for online zakat collection hold crucial significance in improving the overall collection rate. This paper, utilizing data from 230 zakat payers, presents an empirical assessment of various machine learning algorithms aimed at predicting zakat payer intentions when utilizing online platforms for zakat payments. Additionally, this paper presents the analysis of machine learning features importance to justify the effect of technology acceptance model (TAM) and theory of technology readiness (TR) attributes in the machine learning algorithms for predicting e-zakat payment service adoption intention. The findings show that many of the machine learning models are able to perform for highly accurate results, with most achieving over 80% accuracy. The most crucial attribute influencing these predictions was found to be the TAM. This study's methodology is designed to be easily replicable, allowing for further detailed exploration of both the influencing factors and the machine learning algorithms used.