Muzafar Ismail, Mohd
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Low insertion loss open-loop resonator–based microstrip diplexer with high selective for wireless applications Elabd, Rania Hamdy; Al-Gburi, Ahmed Jamal Abdullah; Alhassoon, Khaled; Muzafar Ismail, Mohd; Zakaria, Zahriladha
Bulletin of Electrical Engineering and Informatics Vol 13, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i3.6789

Abstract

This paper presents a low-insertion-loss open-loop resonator (OLR)-based microstrip diplexer with high-selective for wireless applications. We used two series capacitive gaps in the microstrip transmission line, loaded with rectangular-shaped half-wavelength OLRs, to create a high-selectivity bandpass filter (BPF). The planned BPFs are linked through a T-junction combiner, precisely tuned to align with both filters and the antenna port in order to produce the proposed diplexer. The system is implemented on a rogers TMM4 substrate with a loss tangent of 0.002, a dielectric constant of 4.7, and a thickness of 1.52 mm. The suggested diplexer has dimensions of (90×70) mm². It achieves a modest frequency space ratio of R=0.1646 in both transmit and receive modes by having two resonance frequencies of ft=2.191 GHz and fr=2.584 GHz, respectively. The simulated structure displays good insertion losses of approximately 1.2 dB and 1.79 dB for the two channels, respectively, at fractional bandwidths of 1.24% at 2.191 GHz and 0.636% at 2.584 GHz. The simulated isolation values for 2.191 GHz and 2.584 GHz are 53.3 dB and 66.5 dB, respectively.