Michael, Stefanus
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Multimodal speech emotion recognition optimization using genetic algorithm Michael, Stefanus; Zahra, Amalia
Bulletin of Electrical Engineering and Informatics Vol 13, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i5.7409

Abstract

Speech emotion recognition (SER) is a technology that can detect emotions in speech. Various methods have been used in developing SER, such as convolutional neural networks (CNNs), long short-term memory (LSTM), and multilayer perceptron. However, sometimes in addition to model selection, other techniques are still needed to improve SER performance, namely optimization methods. This paper compares manual hyperparameter tuning using grid search (GS) and hyperparameter tuning using genetic algorithm (GA) on the LSTM model to prove the performance increase in the multimodal SER model after optimization. The accuracy, precision, recall, and F1 score improvement obtained by hyperparameter tuning using GA (HTGA) is 2.83%, 0.02, 0.05, and 0.04, respectively. Thus, HTGA obtains better results than the baseline hyperparameter tuning method using a GS.