Claim Missing Document
Check
Articles

Found 2 Documents
Search

Removal of sulphur and nitrogen compounds from model fuel by adsorption of modified activated carbon Joseph, Collin Glen; Selvam, Narrisma Wengda; Anisuzzaman, S. M.
International Journal of Renewable Energy Development Vol 13, No 5 (2024): September 2024
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2024.60089

Abstract

This study aimed to achieve the highest percentage removal of dibenzothiophene (DBT), quinoline (QUI), and indole (IND) adsorbed by double-impregnated modified activated carbon (MAC). Modification of commercial activated carbon (AC) by sulphuric acid (H2SO4) of 15%, 30%, 45%, 60%, and 75% w/v followed by subsequent 1 zinc chloride (ZnCl2): 1 AC impregnation ratio and activated at 500 oC in a muffle furnace under self-generated atmosphere for an hour. The determination of optimized MAC was identified through the highest removal rate of DBT, QUI, and IND from adsorption experiments which were analysed using an ultraviolet-visible (UV-Vis) spectrophotometer. It was found that DBT and IND showed a removal high percentage of up to 86.23% and 82.77% respectively by using 75% H2SO4 with ZnCl2 MAC. Meanwhile, QUI favoured 30% H2SO4 with ZnCl2 MAC with a removal percentage of 33.17% which was still higher than unmodified AC. Physical and chemical properties such as the morphological structure, elemental analysis, porosity, pore size, surface functional group, percentage yield, pH, bulk density, content, ash content, and iodine number were studied for the optimized MAC. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy and Fourier transform infrared spectroscopy (FTIR) were used to characterize the MAC. Both MACs showed high percentage yields of 72.08% and 71.13% for 30% and 75% H2SO4 and ZnCl2 MAC respectively. Meanwhile, the pH was between the ranges of 5.36-5.53 for both MACs. Bulk densities were also favourable while the moisture and ash content were within acceptable limits. Iodine numbers for 30% and 75% H2SO4 and ZnCl2 MAC were 857 and 861 mg/g respectively, hence indicating that the MAC achieved high porosity and good adsorption performance. Langmuir, Freundlich, and Temkin adsorption isotherm models as well as pseudo-first order (PFO) and pseudo-second order (PSO) kinetic models were considered for understanding the adsorption mechanisms. The study revealed that DBT, QUI, and IND removal processes, followed the Langmuir adsorption isotherm model with correlation coefficients, R2 of 0.9905, 0.9791, and 0.9964 respectively. Moreover, the adsorption kinetic data of DBT, QUI, and IND provided a better fitting to the PSO kinetic model with R2 of 0.9992, 0.9987, and 0.9998 respectively. According to the Langmuir isotherm model and PSO kinetic model, the adsorption mechanisms of DBT QUI and IND were chemisorbed under monolayer formations.
Designing A Visible Light Driven TiO2-Based Photocatalyst by Doping and Co-Doping with Niobium (Nb) and Boron (B) Yeoh, Jia Zheng; Chan, Phei Lim; Pung, Swee Yong; Ramakrishnan, Sivakumar; Joseph, Collin Glen; Chen, Chia Yun
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 2 Year 2024 (August 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20137

Abstract

Water pollution has emerged as a significant worldwide issue, with organic pollutants being a key contributor. Titanium dioxide (TiO2) has demonstrated promising photocatalytic performance in removing organic pollutants under ultraviolet (UV) irradiation. However, the wide band gap (3.2 eV) of TiO2 results in low absorption capacity of visible light, hindering its overall efficiency in degrading organic pollutants. To address the limitation, this research aimed to synthesize visible light-driven TiO2 photocatalyst with different polymorphs (anatase and rutile) and investigate the effect of various doping combination (Nb, B and Nb,B) and concentrations (0.25, 0.50, 0.75 and 1.00 mol%) on the photodegradation efficiency towards methylene blue (MB) dye solution. Anatase phase was obtained when TiO2-based nanopowders were calcined at 400 °C, while the rutile phase was formed at 900 °C based on XRD analyses. Additionally, the morphology analyses revealed that the particle size of anatase is much smaller than that of rutile. The presence of dopants further reduced the particle size of both anatase and rutile phases. Based on UV-Vis absorbance spectra analyses, the anatase Nb,B-TiO2 with 0.50 mol% of dopant concentration exhibited the best photocatalytic performance towards MB. Moreover, the anatse phase of 0.50 mol% Nb,B-TiO2 showed the narrowest band gap of 2.74 eV compared to the TiO2 (3.4 eV), representing a reduction of 19.41 %, according to UV-Vis analyses. These outcomes suggest the potential application of anatase phase of 0.50 mol% Nb,B-TiO2 in treating organic pollutants in wastewater under visible light conditions in future. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).