Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Signal and Image Processing Letters

Letter Detection: An Empirical Comparative Study of Different ML Classifier and Feature Extraction Wibawa, Aji Prasetya; Putri, Nastiti Susetyo Fanany; Widiharso, Prasetya
Signal and Image Processing Letters Vol 5, No 1 (2023)
Publisher : Association for Scientific Computing Electrical and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/simple.v5i1.45

Abstract

Work and communication activities are inextricably linked. Letters are an example of a communication medium that is still widely utilized. When it comes to significant job, however, simply an official letter is required. Official and private letters must be distinguished and classified. Different feature extraction methods, such as the count-vectorizer and TF-IDF vectorizer, are employed to transmit the detection of this official and personal letter. To categorize letters by type, various machine learning (ML) techniques are employed. Nave Bayes, Support vector machine, and AdaBoost are the algorithms. The accuracy measurements used in this study include accuracy scores, F1-mean, recall, and precision. The best working algorithm is Naïve Bayes for two vectorizer methods used, with an accuracy value of 98%.