Claim Missing Document
Check
Articles

Found 3 Documents
Search

Klasterisasi Perguruan Tinggi LLDIKTI V Berdasarkan Indikator Kinerja Utama dan PDDIKTI Menggunakan K-Means Clustering Fatmawaty, Virdiana Sriviana; Riadi, Imam; Herman, Herman
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 8, No 2 (2024): April 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v8i2.7497

Abstract

Pertumbuhan jumlah perguruan tinggi yang terus meningkat menjadi salah satu faktor krusial untuk memastikan mutu pendidikan tinggi agar berdaya saing. Komposisi perguruan tinggi di Provinsi Daerah Istimewa Yogyakarta terdiri atas 77% Perguruan Tinggi Swasta (PTS) dan sisanya adalah Perguruan Tinggi Negeri (PTN). Masing-masing perguruan tinggi memiliki Indikator Kinerja Utama (IKU) yang wajib dilaporkan dan dipenuhi, serta melakukan pendataan aktivitas pembelajarannya pada Pangkalan Data Pendidikan Tinggi (PDDIKTI). Data IKU dan data PDDIKTI ini menjadi  bahan evaluasi dan analisis untuk menentukan baseline dalam aktivitas pembinaan di LLDikti Wilayah V khususnya bagi PTS. Salah satu model analisis yang dapat dilakukan adalah dengan metode klasterisasi. Metode ini biasa digunakan pada data mining untuk mengelompokkan data berdasarkan kesamaan karakteristik data. Penelitian ini melakukan klasterisasi PTS di LLDIKTI Wilayah V menggunakan algoritma K-Means Custering. Hasil penelitian ini menunjukkan bahwa berdasarkan kesamaan karakteristik data IKU dan data PDDIKTI terbentuk empat klaster PTS, yaitu klaster 1 terdiri dari 4 PTS, klaster 2 terdiri dari 46 PTS, klaster 3 terdiri dari 21 PTS, dan klaster 4 terdiri dari 33 PTS.  Hasil analisis ini akan sangat bermanfaat bagi LLDIKTI Wilayah V dalam melakukan fungsi pembinaan kepada PTS.
Higher Education Institution Clustering Based on Key Performance Indicators using Quartile Binning Method Fatmawaty, Virdiana Sriviana; Riadi, Imam; Herman, Herman
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 24 No 1 (2024)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i1.4244

Abstract

The Key Performance Indicators of Higher Education Institutions (KPI-HEIs) are a crucial component of the internal quality assurance system that supports the achievement of excellence status for higher education institutions. Many private higher education institutions face challenges in independently analyzing the key performance assessment indicators of Private Higher Education Institutions (PHEIs), which often require complex methodological approaches and specialized expertise. The research aims to cluster PHEIs based on achieving key performance indicators (KPIs). Research the method used descriptive statistical methods and quartile binning techniques to analyze and cluster data based on the achievement of KPI-HEIs. The research results, based on descriptive statistical analysis, identified outliers in eight KPI-HEIs, along with a dominance of zero values in KPI 1, KPI 2, KPI 6, KPI 7, and KPI 8, with the highest proportion reaching 90.91% for KPI 8. Based on these findings, clustering using the quartile binning method resulted in four clusters of PHEIs based on KPIs: Cluster 1 consists of 19 institutions with poor, Cluster 2 consists of 14 institutions with fair achievement, Cluster 3 consists of 16 institutions with good achievement, and Cluster 4 consists of 17 institutions with very good achievement, which can serve as examples for other institutions. This research concludes that the quartile binning method successfully categorized private higher education institutions based on their achievement of KPIs into four clusters: poor, fair, good, and very good. This outcome demonstrates the effectiveness of the method in understanding the performance distribution of these institutions. It provides valuable insights for stakeholders to develop data-driven strategies aimed at enhancing educational quality.
Higher Education Institution Clustering Based on Key Performance Indicators using Quartile Binning Method Fatmawaty, Virdiana Sriviana; Riadi, Imam; Herman, Herman
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 24 No. 1 (2024)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i1.4244

Abstract

The Key Performance Indicators of Higher Education Institutions (KPI-HEIs) are a crucial component of the internal quality assurance system that supports the achievement of excellence status for higher education institutions. Many private higher education institutions face challenges in independently analyzing the key performance assessment indicators of Private Higher Education Institutions (PHEIs), which often require complex methodological approaches and specialized expertise. The research aims to cluster PHEIs based on achieving key performance indicators (KPIs). Research the method used descriptive statistical methods and quartile binning techniques to analyze and cluster data based on the achievement of KPI-HEIs. The research results, based on descriptive statistical analysis, identified outliers in eight KPI-HEIs, along with a dominance of zero values in KPI 1, KPI 2, KPI 6, KPI 7, and KPI 8, with the highest proportion reaching 90.91% for KPI 8. Based on these findings, clustering using the quartile binning method resulted in four clusters of PHEIs based on KPIs: Cluster 1 consists of 19 institutions with poor, Cluster 2 consists of 14 institutions with fair achievement, Cluster 3 consists of 16 institutions with good achievement, and Cluster 4 consists of 17 institutions with very good achievement, which can serve as examples for other institutions. This research concludes that the quartile binning method successfully categorized private higher education institutions based on their achievement of KPIs into four clusters: poor, fair, good, and very good. This outcome demonstrates the effectiveness of the method in understanding the performance distribution of these institutions. It provides valuable insights for stakeholders to develop data-driven strategies aimed at enhancing educational quality.