Claim Missing Document
Check
Articles

Found 3 Documents
Search

Implementasi Algoritma Backpropagation Untuk Prediksi Jumlah Siswa SMA Salis, Rahmi; Windarto, Agus Perdana; Suhendro, Dedi
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 8, No 3 (2024): Juli 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v8i3.7774

Abstract

Senior High School (SMA) is one form of formal education unit that organizes general education at the secondary education level as a continuation of Junior High School (SMP). The number of high school students in Pematangsiantar City has decreased and increased from year to year. The factors causing the decrease and increase in the number of students are economic factors, population growth rate, distance from home, age, low quality of schools, lack of teachers and teaching media. This is because the number of students is very influential in determining when additional teachers, classrooms, textbooks and teaching media are needed to support the learning process. This study aims to predict the number of high school students in Pematangsiantar City. The dataset used is a dataset of the number of high school students in Pematangsiantar City in 2019-2023 obtained from the Ministry of Education, Culture, Research and Technology (Dapodik) website https://dapo.kemdikbud.go.id/pd/2/076300. The dataset is then divided into 2 parts, namely training and testing datasets. The algorithm used in the research is the Backpropagation algorithm with 6 architectural models, namely 4-15-1, 4-25-1, 4-45-1, 4-55-1, 4-75-1, and 4-85-1. The results of this study obtained the best architectural model, namely 4-25-1 with an accuracy level of 87.5%, Epoch 65, MSE Training 0.000967055, and MSE Testing 0.001440343. Based on this best architecture model will be used to predict the number of high school students in Pematangsiantar City for 2024.
Implementasi Algoritma Backpropagation Untuk Prediksi Jumlah Siswa SMA Salis, Rahmi; Windarto, Agus Perdana; Suhendro, Dedi
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 8, No 3 (2024): Juli 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v8i3.7774

Abstract

Senior High School (SMA) is one form of formal education unit that organizes general education at the secondary education level as a continuation of Junior High School (SMP). The number of high school students in Pematangsiantar City has decreased and increased from year to year. The factors causing the decrease and increase in the number of students are economic factors, population growth rate, distance from home, age, low quality of schools, lack of teachers and teaching media. This is because the number of students is very influential in determining when additional teachers, classrooms, textbooks and teaching media are needed to support the learning process. This study aims to predict the number of high school students in Pematangsiantar City. The dataset used is a dataset of the number of high school students in Pematangsiantar City in 2019-2023 obtained from the Ministry of Education, Culture, Research and Technology (Dapodik) website https://dapo.kemdikbud.go.id/pd/2/076300. The dataset is then divided into 2 parts, namely training and testing datasets. The algorithm used in the research is the Backpropagation algorithm with 6 architectural models, namely 4-15-1, 4-25-1, 4-45-1, 4-55-1, 4-75-1, and 4-85-1. The results of this study obtained the best architectural model, namely 4-25-1 with an accuracy level of 87.5%, Epoch 65, MSE Training 0.000967055, and MSE Testing 0.001440343. Based on this best architecture model will be used to predict the number of high school students in Pematangsiantar City for 2024.
PREDIKSI PELANGGAN LISTRIK MENURUT JENIS PELANGGAN PADA PT. PLN (PERSERO) UP3 PEMATANG SIANTAR MENGGUNAKAN METODE BACKPROPAGATION Suhendro, Dedi; Salis, Rahmi
Jurnal Informatika dan Teknik Elektro Terapan Vol. 12 No. 1 (2024)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

PT. PLN (Persero) sebagai perusahaan BUMN di Indonesia yang bertugas menyuplai serta mengatur tenaga listrik. Sehingga permintaan energi listrik tersebut harus diikuti dengan tersedianya tenaga listrik. Penelitian ini bertujuan untuk menganalisis dan mengimplementasikan metode Backpropagation dalam memprediksi pelanggan listrik menurut Jenis menggunakan software Matlab. Data pelanggan listrik menurut jenis pelanggan di UP3 Pematang Siantar, tahun 2018-2022, yang diperoleh dari PT.PLN (Persero) UP3 Pematang Siantar, Variabel input terdiri dari 5 jenis pelanggan listrik antara lain: Rumah tangga (X1), Sosial (X2), Pemerintah (X3), Bisnis/Usaha (X4), Industri (X5).  Hasil pelatihan dan pengujian dari 5 model JST adalah (4-25-1-1, 4-45-1-1, 4-75-1-1, 4-85-1-1, 4-100-1-1) diperoleh model arsitektur terbaik adalah 4-45-1-1 dengan tingkat akurasi 80%, Epoch sebesar 31, MSE Pengujian 0.0012840520, MSE Pelatihan 0.0009692780.