This Author published in this journals
All Journal MAJALAH ILMIAH GLOBE
A.A. Md. Ananda Putra Suardana
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PEMETAAN MANGROVE MENGGUNAKAN ALGORITMA MULTIVARIATE RANDOM FOREST: Studi Kasus di Segara Anakan, Cilacap Muhammad Rizki Nandika; A.A. Md. Ananda Putra Suardana; Nanin Anggraini
Majalah Ilmiah Globe Vol. 25 No. 1 (2023): GLOBE VOL 25 NO 1 TAHUN 2023
Publisher : Badan Informasi Geospasial

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Potensi pengembangan dan pemanfaatan Artificial Intelligence (AI) dan Machine Learning (ML) terus meningkat untuk dimanfaatkan dalam pemrosesan data penginderaan jauh pada periode waktu terakhir. Teknologi penginderaan jauh telah terbukti dapat diandalkan untuk mendeteksi sebaran tutupan mangrove. Salah satu metode berbasis ML yang digunakan untuk melakukan deteksi sebaran tutupan mangrove adalah metode Random Forest. Penelitian ini berfokus pada pengujian akurasi klasifikasi Random Forest dalam mengidentifikasi mangrove di Segara Anakan, Cilacap. Seluruh pemrosesan data dan analisis dilakukan menggunakan platform berbasis cloud, Google Earth Engine. Data yang digunakan yaitu citra satelit Sentinel-2A akuisisi tanggal 1 Januari - 31 Desember 2020. Metode klasifikasi menggunakan algoritma RF dengan 12 kombinasi band dan indeks yang berbeda: biru, hijau, merah, red edge, NIR, SWIR-1, SWIR-2, NDVI, MNDWI, SR, GCVI, MMRI. Hasil penelitian menunjukkan bahwa hasil klasifikasi menggunakan 12 parameter mampu mengidentifikasi mangrove dengan nilai akurasi yang tinggi (OA = 0,892; kappa = 0,782). Hasil penelitian ini menunjukkan bahwa MMRI menjadi parameter yang diketahui memiliki kemampuan yang paling baik dalam memisahkan objek mangrove dan non-mangrove, diikuti selanjutnya oleh SWIR-2.