Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementation of K-Nearest Neighbors, Naïve Bayes Classifier, Support Vector Machine and Decision Tree Algorithms for Obesity Risk Prediction Putri, Amanda Iksanul; Husna, Nur Alfa; Cia, Neha Mella; Arba, Muhammad Abdillah; Aisyi, Nasywa Rihadatul; Pramesthi, Chintya Harum; Irdayusman, Abidaharbya Salsa
Public Research Journal of Engineering, Data Technology and Computer Science Vol. 2 No. 1: PREDATECS July 2024
Publisher : Institute of Research and Publication Indonesia (IRPI).

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/predatecs.v2i1.1110

Abstract

An abnormal or excessive build-up of fat that can negatively impact one's health as a result of an imbalance in energy between calories consumed and burnt is known as obesity. The majority of ailments, such as diabetes, heart disease, cancer, osteoarthritis, chronic renal disease, stroke, hypertension, and other fatal conditions, are linked to obesity. Information technology has therefore been the subject of several studies aimed at diagnosing and treating obesity. Because there is a wealth of information on obesity, data mining techniques such as the K-Nearest Neighbors (K-NN) algorithm, Naïve Bayes Classifier, Support Vector Machine (SVM), and Decision Tree can be used to classify the data. The 2111 records and 17 characteristics of obesity data that were received from Kaggle will be used in this study. The four algorithms are to be compared in this study. In other words, using the dataset used in this study, the Decision Tree algorithm's accuracy outperforms that of the other three algorithms K-NN, Naïve Bayes, and SVM. Using the Decision Tree algorithm, the accuracy was 84.98%; the K-NN algorithm came in second with an accuracy value of 83.55%; the Naïve Bayes algorithm came in third with an accuracy rate of 77.48%; and the SVM algorithm came in last with the lowest accuracy value in this study, at 77.32%.