Claim Missing Document
Check
Articles

Found 2 Documents
Search

Strategic Feature Selection for Enhanced Scorch Prediction in Flexible Polyurethane Form Manufacturing Omoruwou, Felix; Ojugo, Arnold Adimabua; Ilodigwe, Solomon Ebuka
Journal of Computing Theories and Applications Vol. 1 No. 3 (2024): JCTA 1(3) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.9539

Abstract

The occurrence of scorch during the production of flexible polyurethane is a significant issue that negatively impacts foam products' resilience and generally jeopardizes their integrity. The likelihood of foam product failure can be decreased by optimizing production variables based on machine learning algorithms used to predict the occurrence of scorch. Investigating technology is required because prevention is the best approach to dealing with this problem. Hence, machine learning algorithms were trained to predict the occurrence of scorch using the thermodynamic profile of polyurethane foam, which is made up of recorded production variables. A variety of heuristics algorithms were trained and assessed for how well they performed, namely XGBoost, Decision trees, Random Forest, K-nearest neighbors, Naive Bayes, Support Vector Machines, and Logistic Regression. The XGboost ensemble was found to perform best. It outperformed others with an accuracy of 98.3% (i.e., 0.983), followed by logistic regression, decision tree, random forest, K-nearest neighbors, and naïve Bayes, yielding a training accuracy of 88.1%, 66.7%, 84.2%, 87.5%, and 67.5% respectively. The XGBoost was finally used, yielding 2-distinct cases of non(occurrence) of scorch. Ensemble demonstrates that it is quite capable and is an effective way to predict the occurrence of scorch.
Unmasking effects of feature selection and SMOTE-Tomek in tree-based random forest for scorch occurrence detection Dumebi Okpor, Margaret; Eluemnor Anazia, Kizito; Adigwe, Wilfred; Abugor Okpako, Ejaita; Moses Setiadi, De Rosal Ignatius; Adimabua Ojugo, Arnold; Omoruwou, Felix; Erhovwo Ako, Rita; Ochuko Geteloma, Victor; Valentine Ugbotu, Eferhire; Chukwudi Aghaunor, Tabitha; Enadona Oweimeito, Amanda
Bulletin of Electrical Engineering and Informatics Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i3.8901

Abstract

Scorch occurrence during the production of flexible polyurethane foam has been a menace that consistently, jeopardize a foam’s integrity and resilience. It leads to foam suppression and compactness integrity failure due to scorch. There is always the increased likelihood of scorching, and makes crucial the utilization of methods that seek to avert it. Studies predict that the formation of foam constituent processes via optimization using machine learning have adequately trained models to effectively identify scorch occurrence during the profiling in the polyurethane foam production. Our study utilizes the random forest (RF) ensemble with feature selection (FS) and data balancing technique to identify production predictors. Study yields accuracy of 0.9998 with F1-score of 0.9819. Model yields 2-distinct cases for (non)-occurrence of scorch respectively, and the ensemble demonstrates that it can effectively and efficiently predict the occurrence of scorch in the production of flexible polyurethane foam manufacturing process.