Claim Missing Document
Check
Articles

Found 1 Documents
Search

Exploring DQN-Based Reinforcement Learning in Autonomous Highway Navigation Performance Under High-Traffic Conditions Nugroho, Sandy; Setiadi, De Rosal Ignatius Moses; Islam, Hussain Md Mehedul
Journal of Computing Theories and Applications Vol. 1 No. 3 (2024): JCTA 1(3) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.9929

Abstract

Driving in a straight line is one of the fundamental tasks for autonomous vehicles, but it can become complex and challenging, especially when dealing with high-speed highways and dense traffic conditions. This research aims to explore the Deep-Q Networking (DQN) model, which is one of the reinforcement learning (RL) methods, in a highway environment. DQN was chosen due to its proficiency in handling complex data through integrated neural network approximations, making it capable of addressing high-complexity environments. DQN simulations were conducted across four scenarios, allowing the agent to operate at speeds ranging from 60 to nearly 100 km/h. The simulations featured a variable number of vehicles/obstacles, ranging from 20 to 80, and each simulation had a duration of 40 seconds within the Highway-Env simulator. Based on the test results, the DQN method exhibited excellent performance, achieving the highest reward value in the first scenario, 35.6117 out of a maximum of 40, and a success rate of 90.075%.