Claim Missing Document
Check
Articles

Found 7 Documents
Search

Efficient Adsorption of Methylene Blue Dye Using Ni/Al Layered Double Hydroxide-Graphene Oxide Composite Amri, Amri; Wibiyan, Sahrul; Wijaya, Alfan; Ahmad, Nur; Mohadi, Risfidian; Lesbani, Aldes
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 2 Year 2024 (August 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20121

Abstract

To address environmental pollution, we developed Ni/Al layered double hydroxide-graphene oxide (Ni/Al-GO) adsorbent materials for the purpose of eliminating methylene blue (MB) dye pollutants. The adsorption process was explored by examining many experimental factors, including temperature, regeneration/reuse procedure, pH, and time, and their effects on the material. The appropriate model for the isotherm is the Langmuir isotherm. The Ni/Al-GO material achieved a maximum adsorption capacity of 61.35 mg/g for MB dye at a temperature of 60 °C. The thermodynamic characteristics indicate that the adsorption process is both endothermic and spontaneous as the temperature increases. The regeneration method demonstrated that the Ni/Al-GO material has a highly stable structure, enabling it to be utilized for five cycles with a remarkable regeneration rate of 93.49% in the fifth cycle. The pH that yielded the best results for all materials was pH 10, and the kinetic model demonstrated a pseudo second-order behavior. Copyright © 2024 by Authors, Published by MKICS and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Selective Adsorption of Anionic Dyes by Graphene Oxide Adsorbent Amri, Amri; Wibiyan, Sahrul
Indonesian Journal of Material Research Vol. 2 No. 2 (2024): July
Publisher : Magister Program of Material Science Graduate School of Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/ijmr.20242232

Abstract

Pollution from dyes is well-known for its harmful effects on human health and the environment. Eliminating pollutants such as dyes is a crucial task that can be achieved through various methods, one of which is adsorption. The synthesis of graphene oxide material is achieved from graphite using the Hummers method. The obtained material was then characterised using XRD and FT-IR techniques and tested as an adsorbent for selective adsorption of anionic dyes. The obtained results indicate that the congo red dye was absorbed the most in the selective dyes process, followed by the methyl orange dye, and finally the direct yellow dye.
Optimization of Desulfurization of 4-Methyldibenzothiophene and 4,6-Dimethyldibenzothiophene Using Mg/Al Layered Double Hydroxide Equipped with ZnO/TiO2 Amri, Amri; Ahmad, Nur; Wibiyan, Sahrul; Wijaya, Alfan; Mardiyanto, Mardiyanto; Royani, Idha; Mohadi, Risfidian; Lesbani, Aldes
Indonesian Journal of Chemistry Vol 24, No 4 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.88790

Abstract

The growth of heavy industry leads to an increase in sulfur dioxide emissions, impacting health, economy, and the fulfilment of the ecological needs for society. Sulfur removal is carried out using the oxidative desulfurization (ODS) method. In this study, layered double hydroxide materials of Mg/Al, Mg/Al-TiO2, and Mg/Al-ZnO were successfully synthesized and analyzed using X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) techniques. Those materials are used as catalysts for the desulfurization of 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT). Composite Mg/Al catalysts with metal oxides provide superior desulfurization process efficiency and enhanced stability, making them highly effective for repeated use. The conversion percentage of desulfurization of 4-MDBT and 4,6-DMDBT increases with time. The n-hexane is a suitable solvent for desulfurization of 4-MDBT and 4,6-DMDBT. All catalysts exhibit significant heterogeneity that greatly aids in the separation process.
Synthesis and Performance of ZnAl@Layered Double Hydroxide Composites with Eucheuma cottonii for Adsorption and Regeneration of Congo Red Dye Wibiyan, Sahrul; Royani, Idha; Lesbani, Aldes
Indonesian Journal of Environmental Management and Sustainability Vol. 8 No. 3 (2024): September
Publisher : Magister Program of Material Science, Graduate School of Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/ijems.2024.8.3.126-134

Abstract

This study investigates the synthesis and characterization of ZnAl-layered double hydroxide (ZnAl@LDH) composites modified with Eucheuma cottonii (EC) for the adsorption and regeneration of congo red (CR) dye. The ZnAl@LDH was synthesized using a co-precipitation method, and the composite with EC was prepared via hydrothermal techniques. The structural properties of the composites were analyzed using XRD and FTIR. Adsorption experiments were conducted to determine the effects of pH, contact time, concentration, and temperature on dye removal. The adsorption kinetics followed the pseudo-second-order (PSO) model, while the isotherm data best fitted the Freundlich model, indicating multilayer adsorption. The ZnAl@EC composite demonstrated superior adsorption capacity (243.902 mg/g at 40 °C) compared to ZnAl@LDH and EC. Thermodynamic studies revealed that the adsorption process was spontaneous and endothermic for ZnAl@LDH and EC but exothermic for ZnAl@EC. The regeneration study showed that ZnAl@EC retained significant adsorption capacity even after seven cycles, indicating its potential for practical applications in wastewater treatment.
Selectivity of Ni/Al LDH Material Supported by Green Tea Leaf (Camellia sinensis) Extract as an Adsorbent for Removing Cationic Dyes in Wastewater Treatment Amri, Amri; Wibiyan, Sahrul; Fitri, Erni Salasia
Indonesian Journal of Material Research Vol. 3 No. 1 (2025): March
Publisher : Magister Program of Material Science Graduate School of Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/ijmr.20253151

Abstract

Water pollution due to synthetic dye waste is a serious environmental problem, so an effective method is needed to overcome it, including using adsorption. In this study, Ni/Al-Cs materials were synthesized and characterized to evaluate their selectivity towards Rhodamine B (RhB), Malachite Green (MG), and Methylene Blue (MB) dyes. Adsorption selectivity tests were conducted using UV-Vis spectroscopy to determine changes in dye concentration before and after interaction with the material. Results showed that Ni/Al-Cs had the highest adsorption capacity towards MG, followed by MB and RhB. With its selective adsorption properties, Ni/Al-Cs material has the potential to be used as an effective adsorbent in the treatment of dye effluents in aquatic environments, especially MG dye.
Evaluation of Natural Zeolite and Bentonite as Catalysts in Cyclohexanone Oxidation with Hydrogen Peroxide Hidayatullah, Muhammad; Wibiyan, Sahrul; Mohadi, Risfidian; Lesbani, Aldes
Indonesian Journal of Material Research Vol. 3 No. 3 (2025): Future Issue: November
Publisher : Magister Program of Material Science Graduate School of Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/ijmr.20253369

Abstract

The catalytic oxidation of cyclohexanone using environmentally benign oxidants remains a key challenge in sustainable organic synthesis. In this study, natural zeolite (clinoptilolite and mordenite) and bentonite were evaluated as heterogeneous catalysts for the oxidation of cyclohexanone with hydrogen peroxide under reflux at 90 °C. Structural characterization by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirmed the aluminosilicate frameworks, where clinoptilolite exhibited the highest crystallinity, followed by bentonite and mordenite. The oxidation products were analyzed using FTIR, melting point measurements, and gas chromatography–mass spectrometry (GC–MS). Despite the catalytic activity of all materials, FTIR and melting point analyses revealed that the expected adipic acid was not formed under the applied conditions. GC–MS results indicated the formation of partially oxidized oxygenated intermediates such as alcohols, ethers, and carbonyl derivatives, whose distribution strongly depended on the catalyst’s pore structure and surface properties. Clinoptilolite promoted confined partial oxidation due to its microporous structure, whereas bentonite facilitated non-selective oxidation owing to its open layered framework. These findings emphasize that the interplay between molecular confinement and oxygen accessibility governs the selectivity of cyclohexanone oxidation and provides insights for the rational design of improved zeolite- and clay-based catalytic systems for green oxidation reactions.
Recycle Performance of Heterogeneous Catalyst Metal Oxides-Based Layered Double Hydroxide for Oxidative Desulfurization Process of 4-methyldibenzothiophene Ahmad, Nur; Rohmatullaili, Rohmatullaili; Hanifah, Yulizah; Wibiyan, Sahrul; Amri, Amri; Wijaya, Alfan; Mardiyanto, Mardiyanto; Mohadi, Risfidian; Royani, Idha; Lesbani, Aldes
Bulletin of Chemical Reaction Engineering & Catalysis 2023: BCREC Volume 18 Issue 4 Year 2023 (December 2023)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20034

Abstract

The desulfurization of oil must be resolved as soon as possible due to a variety of issues, including environmental contamination and protection regulations. It was believed that oxidative desulfurization (ODS) was the most promising method. In this research, metal oxide-based layered double hydroxides (TiO2@Ni-Al and ZnO@Ni-Al) were effectively synthesized for the ODS of 4-methyldibenzothiophene (4-MDBT). TiO2@Ni-Al and ZnO@Ni-Al exhibited superior catalytic performance and high recycling capacity, achieving a 99% removal rate after five reactions in 30 min. The heterogeneous catalyst TiO2@Ni-Al/ZnO@Ni-Al is easy to separate and recover from a reaction system. Increased temperature facilitates the transformation of 4-MDBT into 4-MDBTO2. The influence of H2O2's rapid decomposition rate, which can inhibit oxidation reactions, reduces the catalytic activity as the temperature increases. 4-MDBT Sulphur removal on TiO2@Ni-Al and ZnO@Ni-Al is 99.48 and 99.51%, respectively. TiO2@Ni-Al and ZnO@Ni-Al have great potential for use in the industry based on these results. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).