Claim Missing Document
Check
Articles

Found 2 Documents
Search

Design of Low Vision Electronic Glasses with Image Processing Capabilities Using Raspberry Pi Setiawan, Rachmad; Rayhan Akmal Fadlurahman; Nada Fitrieyatul Hikmah
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 2 (2023): April
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i2.294

Abstract

Poor vision is one of the most common eye health issues worldwide. Low vision patients are typically treated with optical devices or by substituting hearing or touch for visual capabilities. Head-mounted displays are currently the most promising form of low-vision assistive technology since they utilize the user's remaining natural visual capabilities. In this work, a prototype head-mounted display-based low-vision tool in the form of electronic glasses was designed utilizing a Raspberry Pi computer. The prototype was created using a Raspberry Pi 4 B coupled with cameras to allow real-time video acquisition. The LCD on the electronic eyewear frame as the camera showed the video recording. The prototype also included software utilizing five image processing modes—magnification, brightness enhancement, adaptive contrast enhancement, edge enhancement, and text detection and recognition- to help persons with limited vision acquire visual information more effectively. OpenCV was used with Python to create the software system. Average framerate measurements of 30–40 FPS for brightness and contrast improvement modes, 20 FPS for zooming and edge enhancement modes, and 1.3 FPS for text identification modes showed that the concept of electronic spectacles was successfully implemented in this research.
Smoker Melanosis Classification Using Oral Photographic Feature Extraction Based On K-Nearest Neighbor I Gede Maha Prastya Budi Dharma; Nada Fitrieyatul Hikmah; Tri Arief Sardjono
International Journal of Computer Science and Humanitarian AI Vol. 2 No. 1 (2025): IJCSHAI
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/ijcshai.v2i1.12418

Abstract

Smoking is one of the causes of various diseases in the body. Smoking can also cause abnormal conditions that are pathological and physiological in the oral cavity, one of which is smoker melanosis. The clinical picture of pigmentation smoker melanosis is the presence of scattered brown spots with a diameter of less than 1 cm and is most often located on the gingiva. The data was taken using the oral photograph image capture method using a 12MP resolution camera, provided that the object distance from the camera was 6 cm and the flash was on. This analysis utilized the Gingiva Pigmentation Index (GPI) classification system proposed by Hedin, which compares the pigmented area, and Dummett's Oral Colour Index (DOPI), which assesses the density of pigmentation. In this study, the classification process was carried out with the KNN algorithm using features from digital image processing in the segmentation area, the average value of the red, green, and blue colour levels. The classification process uses the nearest neighbour value of 3 and a p-value of 2 to measure the distance to the nearest neighbor using the Minkowski distance formula. The results of the test data accuracy (1.0) with F1 scores for each class for test data DOPI 0 = 1.0, DOPI 1 = 1.0, DOPI 2 = 1.0, DOPI 3 = 1.0. Meanwhile, the classification process can use more up-to-date methods, such as CNN to improve classification accuracy.