Claim Missing Document
Check
Articles

Found 3 Documents
Search

Deep learning-based cervical lesion segmentation in colposcopic images Mukku, Lalasa; Thomas, Jyothi
Applied Engineering and Technology Vol 3, No 1 (2024): April 2024
Publisher : ASCEE

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/aet.v3i1.1345

Abstract

Artificial intelligence assisted cancer detection has changed the ream of diagnosis precision. This study aims to propose a segmentation network using artificial intelligence for accurately segmenting the cervix region and acetowhite lesions in cervigram images, addressing the shortage of skilled colposcopists and streamlining the training process. A computational approach is employed to develop and train a deep learning model specifically tailored for cervix region and acetowhite lesion segmentation in cervigram images. A dataset acquired in collaboration with KIDWAI memorial cancer research institute is used for building the model. Cervigram images are collected for training and validation, and a deep learning architecture is constructed and trained using annotated datasets. The segmentation network  based on efficientnet architecture and atrous spatial pyramid pooling is designed to accurately identify and delineate the target regions, with performance evaluation conducted using precision, accuracy, recall, dice score, and specificity metrics. The proposed segmentation network achieves a precision of 0.7387±0.1541, accuracy of 0.9291, recall of 0.7912±0.1439, dice score of 0.7431±0.1506, and specificity of 0.9589±0.0131, indicating its reliability and robustness in segmenting cervix regions and acetowhite lesions in cervigram images. This research demonstrates the feasibility and effectiveness of using artificial intelligence-based computational models for cervix region and acetowhite lesion segmentation in cervigram images. It provides a foundation for further investigations into classifying cervix malignancy using AI techniques, potentially enhancing early detection and treatment of cervical cancer while addressing the shortage of skilled professionals in the field 
CMT-CNN: colposcopic multimodal temporal hybrid deep learning model to detect cervical intraepithelial neoplasia Mukku, Lalasa; Thomas, Jyothi
International Journal of Advances in Intelligent Informatics Vol 10, No 2 (2024): May 2024
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v10i2.1527

Abstract

Cervical cancer poses a significant threat to women's health in developing countries, necessitating effective early detection methods. In this study, we introduce the Colposcopic Multimodal Temporal Convolution Neural Network (CMT-CNN), a novel model designed for classifying cervical intraepithelial neoplasia by leveraging sequential colposcope images and integrating extracted features with clinical data. Our approach incorporates Mask R-CNN for precise cervix region segmentation and deploys the EfficientNet B7 architecture to extract features from saline, iodine, and acetic acid images. The fusion of clinical data at the decision level, coupled with Atrous Spatial Pyramid Pooling-based classification, yields remarkable results: an accuracy of 92.31%, precision of 90.19%, recall of 89.63%, and an F-1 score of 90.72. This achievement not only establishes the superiority of the CMT-CNN model over baselines but also paves the way for future research endeavours aiming to harness heterogeneous data types in the development of deep learning models for cervical cancer screening. The implications of this work are profound, offering a potent tool for early cervical cancer detection that combines multimodal data and clinical insights, potentially saving countless lives.
TelsNet: temporal lesion network embedding in a transformer model to detect cervical cancer through colposcope images Mukku, Lalasa; Thomas, Jyothi
International Journal of Advances in Intelligent Informatics Vol 9, No 3 (2023): November 2023
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v9i3.1431

Abstract

Cervical cancer ranks as the fourth most prevalent malignancy among women globally. Timely identification and intervention in cases of cervical cancer hold the potential for achieving complete remission and cure. In this study, we built a deep learning model based on self-attention mechanism using transformer architecture to classify the cervix images to help in diagnosis of cervical cancer. We have used techniques like an enhanced multivariate gaussian mixture model optimized with mexican axolotl algorithm for segmenting the colposcope images prior to the Temporal Lesion Convolution Neural Network (TelsNet) classifying the images. TelsNet is a transformer-based neural network that uses temporal convolutional neural networks to identify cancerous regions in colposcope images. Our experiments show that TelsNet achieved an accuracy of 92.7%, with a sensitivity of 73.4% and a specificity of 82.1%. We compared the performance of our model with various state-of-the-art methods, and our results demonstrate that TelsNet outperformed the other methods. The findings have the potential to significantly simplify the process of detecting and accurately classifying cervical cancers at an early stage, leading to improved rates of remission and better overall outcomes for patients globally.