Arini , Gusti Ayu
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALISIS EFEKTIVITAS PROGRAM KARTU PRAKERJA TERHADAP PENURUNAN JUMLAH PENGANGGURAN DI DESA BONJERUK KECAMATAN JONGGAT KABUPATEN LOMBOK TENGAH PADA TAHUN 2021-2022 Pratiassandi, Geger; Fuadi, Helmy; Arini , Gusti Ayu
Jurnal Oportunitas : Ekonomi Pembangunan Vol. 2 No. 1 (2023): Oportunitas, March 2023
Publisher : Fakultas Ekonomi dan Bisnis Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (436.665 KB) | DOI: 10.29303/oportunitas.v2i1.553

Abstract

Penelitian ini bertujuan untuk menganalisis efektivitas program kartu prakerja terhadap penurunan jumlah pengangguran di Desa Bonjeruk Kecamatan Jonggat Kabupaten Lombok Tengah pada tahun 2021-2022. Jumlah responden dalam penelitian ini adalah 53. Teknik pengumpulan data yang digunakan adalah wawancara, dokumentasi dan menyebarkan kuesioner yang berisi 8 pertanyaan masing-masing kategori tentang efektivitas program kartu prakerja berdasarkan 3 kategori yaitu Bekerja Sesuai Dengan Pelatihan dinyatakan efektif sedangkan Bekerja Tidak Sesuai Dengan Pelatihan dan Tidak Bekerja meskipun sudah mengikuti pelatihan dinyatakan tidak efektif. Alat analisis yang digunakan adalah Analisis menggunakan tabel efektivitas. Hasil analisis data menunjukkan bahwa program kartu prakerja tidak efektif dalam menurunkan jumlah pengangguran di Desa Bonjeruk Kecamatan Jonggat Kabupaten Lombok Tengah pada tahun 2021-2022.  Dengan penjelasan Bekerja Sesuai Dengan Pelatihan 32,08 persen, Bekerja Tidak Sesuai Dengan Pelatihan sebesar 28,30 persen dan Tidak Bekerja sebesar 39,62 persen.
Analysis of Factors Influencing the Transformation of the Workforce from the Agricultural Sector to the Non-Agricultural Sector in Bagik Polak Village, West Lombok Regency Puspawati, Sumarni; Daeng , Akung; Arini , Gusti Ayu
West Science Nature and Technology Vol. 2 No. 02 (2024): West Science Nature and Technology
Publisher : Westscience Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58812/wsnt.v2i02.993

Abstract

This study aims to analyze the influence of income, education, age and gender on the transformation of the workforce from the agricultural sector to the non-agricultural sector in Bagik Polak Village. The type of research used in this study is the associative quantitative method. The test was carried out on 94 respondents spread across 7 hamlets, namely Karang buncu lauq, Karang buncu Barat, Karang buncu daye, Rerot, Karang kebon timur, Karang kebon Barat and Enjak. Data was obtained by distributing questionnaires and sampling research using the purposive sampling method. The analysis tool used is logistic regression (logit) which has three tests including Assessing the Overall Model Fit, Testing the Feasibility of the Regression Model (Goodness of Fit Test) and Determination Coefficient (Nagelkerke's R Square). As well as statistical tests, namely the Likelihood Ratio Test (Simultaneous Test F) and the Wald Test (Partial Test t). The results of the analysis show that purely of the four variables used in this study, there are two variables that have a positive and significant effect, namely income with a significant value of 0.045< 0.05; and education with a significant value of 0.019 < 0.05. Meanwhile, the age variables with a significant value of 0.796 > 0.05 and gender with a significant value of 0.851 > 0.05 did not have a significant effect on the transformation of the workforce from the agricultural sector to the non-agricultural sector in Bagik Polak Village. Meanwhile, simultaneously that together, the independent variable (X) has an effect on the transformation of the workforce from the agricultural sector to the non-agricultural sector with a significant chi-square value of 0.004 < 0.05. Meanwhile, Nagelkerke's R2 value shows that all independent variables are able to explain the dependent variable by 42.7% and the remaining 57.3% are explained by other variables that are not included in the model.