Rahmaddeni, -
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Penerapan SVM dan Word2Vec untuk Analisis Sentimen Ulasan Pengguna Aplikasi DANA Supian, Acuan; Revaldo, Bagus Tri; Marhadi, Nanda; Rahmaddeni, -; Efrizoni, Lusiana
Jurnal Ilmiah Komputasi Vol. 23 No. 3 (2024): Jurnal Ilmiah Komputasi : Vol. 23 No 3, September 2024
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32409/jikstik.23.3.3642

Abstract

Dengan meningkatnya penggunaan aplikasi mobile, analisis sentimen terhadap ulasan pengguna menjadi sangat penting untuk memahami persepsi dan kepuasan pelanggan. Aplikasi DANA, sebagai salah satu platform keuangan digital populer di Indonesia, memiliki ribuan ulasan pengguna di Google Playstore yang dapat memberikan wawasan berharga mengenai pengalaman pengguna. Banyaknya ulasan membuat analisis manual tidak efisien dan rentan terhadap bias. Penelitian ini bertujuan mengembangkan model analisis sentimen menggunakan metode Support Vector Machine (SVM) dengan representasi fitur berbasis Word2Vec untuk mengklasifikasikan ulasan pengguna aplikasi DANA di Google Playstore. Tahapan penelitian meliputi pengumpulan data ulasan, preprocessing data, pelatihan model Word2Vec untuk mendapatkan representasi vektor dari teks ulasan, dan penerapan algoritma SVM untuk klasifikasi sentimen. Evaluasi model dilakukan menggunakan metrik akurasi, presisi, recall, dan F1-score. Hasil menunjukkan bahwa model SVM dengan fitur Word2Vec mampu mengklasifikasikan sentimen ulasan pengguna dengan tingkat akurasi mencapai 88%, efektif dalam mengidentifikasi sentimen positif, negatif, dan netral. Hasil penelitian ini dapat digunakan untuk meningkatkan kualitas layanan dan kepuasan pengguna.