Claim Missing Document
Check
Articles

Found 3 Documents
Search

Solusi Komprehensif Menuju Papua Baru: Penyelesaian Konflik Papua Secara Damai, Adil dan Bermartabat Suropati, Untung
Jurnal Lemhannas RI Vol 7 No 1 (2019)
Publisher : Lembaga Ketahanan Nasional Republik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55960/jlri.v7i1.52

Abstract

Insiden pembunuhan 28 pekerja PT Istaka Karya yang tengah mengerjakan proyek jalan Trans Papua tanggal 2 Desember 2018 oleh Kelompok Kriminal Bersenjata (KKB) di Kabupaten Nduga kembali mengingatkan kita akan bara persoalan yang belum kunjung padam di Tanah Papua. Sudah tak terhitung aksi kekerasan yang menelan banyak korban jiwa di kedua belah pihak terjadi sejak Papua resmi menjadi bagian integral negara Republik Indonesia, menyusul dilaksanakannya Penentuan Pendapat Rakyat (Pepera) tahun 1969. Kaum nasionalis dan masyarakat Indonesia pada umumnya menganggap bahwa pro-kontra masuknya Papua menjadi bagian integral negara Republik Indonesia dengan sendirinya selesai sejak Proklamasi Kemerdekaan Indonesia tanggal 17 Agustus 1945. Klaim tersebut diperkuat dengan disetujuinya hasil Pepera di Sidang Umum PBB tanggal 19 November 1969. Dengan latar belakang dan argumentasi yang berbeda, tentu tidak demikian pandangan kaum nasionalis Papua dan warga asli Papua pada umumnya. Dengan fakta demikian, tidak aneh apabila Papua terus bergolak. Bukan hanya Jakarta yang harus terkuras energinya, tapi rakyat Papua mau tidak mau juga harus menanggung beban dan akibatnya. Di sinilah di satu sisi, para elite Jakarta perlu memahami duduk perkara konflik Papua, di sisi lain para tokoh Papua harus berpikir positif, konstruktif dan realistis. Kajian ini dibuat sebagai kontribusi pemikiran guna mencari solusi komprehensif menuju Papua Baru, yaitu Papua yang bebas konflik, maju dan sejahtera.
Implementasi Algoritma Decision Tree C4.5 untuk Klasifikasi Pengangkatan Karyawan Tetap (Studi Kasus) di PT Intinusa Teknik Sejahtera) Suropati, Untung; Deny Saputra
Journal of Management and Bussines (JOMB) Vol. 7 No. 5 (2025): Journal of Management and Bussines (JOMB)
Publisher : IPM2KPE

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31539/68x3rd85

Abstract

This study aims to implement the Decision Tree C4.5 algorithm in the classification of permanent employee appointments at PT Intinusa Teknik Sejahtera to support more objective, accurate, and transparent decision-making. The research method used is a quantitative data mining-based approach with the CRISP-DM framework, using an employee dataset from the HRD department consisting of 16 attributes related to profile and performance. The modeling process was performed using RapidMiner Studio software using the split validation method with a ratio of 80% training data and 20% test data. The results show that the Decision Tree C4.5 classification model has an accuracy of 89.25%, with recall for the Contract class of 91.14% and the Permanent class of 78.57%, and precision for the Contract class of 96.00% and the Permanent class of 61.11%. The conclusions of this study confirm that the attributes of Performance, Attendance, Loyalty, and Tenure are the main factors in permanent employee appointments, and the C4.5 algorithm can be utilized as an HRD decision support system, although further method development is needed to improve precision for the Permanent class.   Keywords: Decision Tree C4.5, Classification, Permanent Employees, Human Resource Management
Implementasi Regresi Linear dan Single Exponential Smoothing Dalam Prediksi Harga Saham ANTM Paidi, Imam; Tundo, Tundo; Rasiban, Rasiban; Suropati, Untung
TEKNOKOM Vol. 7 No. 2 (2024): TEKNOKOM
Publisher : Department of Computer Engineering, Universitas Wiralodra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31943/teknokom.v7i2.222

Abstract

This study focuses on using linear regression and single exponential smoothing (SES) models to predict the share price of PT Aneka Tambang Tbk (ANTM). Data from Yahoo! Finance covering the period from 2005 to 2023 is used. The linear regression model establishes a relationship between the current and previous stock prices, while the SES model smoothes out fluctuations and captures shortterm trends. The findings reveal that both models are highly accurate in predicting ANTM stock prices. However, the SES model is less consistent in capturing shortterm trends, suggesting its effectiveness lies in capturing seasonal and short-term trends in the ANTM stock price data. This research is significant as it contributes to the development of accurate and reliable stock price prediction models, which can assist investors and players in the capital market in making informed investment decisions. The results also provide a foundation for future research on applying more complex and sophisticated forecasting models for stock price prediction.